⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_20.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:39:47 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include t.h *//* * This function contains 276 FP additions, 198 FP multiplications, * (or, 136 additions, 58 multiplications, 140 fused multiply/add), * 142 stack variables, 4 constants, and 80 memory accesses */#include "t.h"static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E T59, T5i, T5k, T5e, T5c, T5d, T5j, T5f;	  {	       E T2, Th, Tf, T6, T5, Tl, T1p, T1n, Ti, T3, Tt, Tv, T24, T1f, T1D;	       E Tb, T1P, Tm, T21, T1b, T7, T1A, Tw, T1H, T13, TA, T1L, T17, T1S, Tq;	       E T1o, T2g, T1t, T2c, TO, TK;	       {		    E T1e, Ta, Tk, Tg;		    T2 = W[0];		    Th = W[3];		    Tf = W[2];		    T6 = W[5];		    T5 = W[1];		    Tk = T2 * Th;		    Tg = T2 * Tf;		    T1e = Tf * T6;		    Ta = T2 * T6;		    Tl = FMA(T5, Tf, Tk);		    T1p = FNMS(T5, Tf, Tk);		    T1n = FMA(T5, Th, Tg);		    Ti = FNMS(T5, Th, Tg);		    T3 = W[4];		    Tt = W[6];		    Tv = W[7];		    {			 E Tp, Tj, TN, TJ;			 Tp = Ti * T6;			 T24 = FMA(Th, T3, T1e);			 T1f = FNMS(Th, T3, T1e);			 T1D = FNMS(T5, T3, Ta);			 Tb = FMA(T5, T3, Ta);			 Tj = Ti * T3;			 {			      E T1a, T4, Tu, T1G;			      T1a = Tf * T3;			      T4 = T2 * T3;			      Tu = Ti * Tt;			      T1G = T2 * Tt;			      {				   E T12, Tz, T1K, T16;				   T12 = Tf * Tt;				   Tz = Ti * Tv;				   T1K = T2 * Tv;				   T16 = Tf * Tv;				   T1P = FNMS(Tl, T6, Tj);				   Tm = FMA(Tl, T6, Tj);				   T21 = FNMS(Th, T6, T1a);				   T1b = FMA(Th, T6, T1a);				   T7 = FNMS(T5, T6, T4);				   T1A = FMA(T5, T6, T4);				   Tw = FMA(Tl, Tv, Tu);				   T1H = FMA(T5, Tv, T1G);				   T13 = FMA(Th, Tv, T12);				   TA = FNMS(Tl, Tt, Tz);				   T1L = FNMS(T5, Tt, T1K);				   T17 = FNMS(Th, Tt, T16);				   T1S = FMA(Tl, T3, Tp);				   Tq = FNMS(Tl, T3, Tp);			      }			 }			 T1o = T1n * T3;			 T2g = T1n * Tv;			 TN = Tm * Tv;			 TJ = Tm * Tt;			 T1t = T1n * T6;			 T2c = T1n * Tt;			 TO = FNMS(Tq, Tt, TN);			 TK = FMA(Tq, Tv, TJ);		    }	       }	       {		    E Te, T2C, T4L, T57, T58, TD, T2H, T4H, T3C, T3Z, T11, T2v, T2P, T3P, T4k;		    E T4v, T3u, T43, T2r, T2z, T3b, T3T, T4g, T4z, T3n, T42, T20, T2y, T34, T3S;		    E T4d, T4y, T1c, T19, T1d, T3E, T1w, T2U, T1g, T1j, T1l;		    {			 E T2d, T2h, T2k, T1q, T1u, T2n, TL, TI, TM, T3x, TZ, T2N, TP, TS, TU;			 {			      E T1, T4K, T8, T9, Tc;			      T1 = ri[0];			      T4K = ii[0];			      T8 = ri[WS(rs, 10)];			      T2d = FMA(T1p, Tv, T2c);			      T2h = FNMS(T1p, Tt, T2g);			      T2k = FMA(T1p, T6, T1o);			      T1q = FNMS(T1p, T6, T1o);			      T1u = FMA(T1p, T3, T1t);			      T2n = FNMS(T1p, T3, T1t);			      T9 = T7 * T8;			      Tc = ii[WS(rs, 10)];			      {				   E Tx, Ts, T2F, TC, T2E;				   {					E Tn, Tr, To, T2D, T4J, Ty, TB, Td, T4I;					Tn = ri[WS(rs, 5)];					Tr = ii[WS(rs, 5)];					Tx = ri[WS(rs, 15)];					Td = FMA(Tb, Tc, T9);					T4I = T7 * Tc;					To = Tm * Tn;					T2D = Tm * Tr;					Te = T1 + Td;					T2C = T1 - Td;					T4J = FNMS(Tb, T8, T4I);					Ty = Tw * Tx;					TB = ii[WS(rs, 15)];					Ts = FMA(Tq, Tr, To);					T4L = T4J + T4K;					T57 = T4K - T4J;					T2F = Tw * TB;					TC = FMA(TA, TB, Ty);					T2E = FNMS(Tq, Tn, T2D);				   }				   {					E TF, TG, TH, TW, TY, T2G, T3w, TX, T2M;					TF = ri[WS(rs, 4)];					T2G = FNMS(TA, Tx, T2F);					T58 = Ts - TC;					TD = Ts + TC;					TG = Ti * TF;					T2H = T2E - T2G;					T4H = T2E + T2G;					TH = ii[WS(rs, 4)];					TW = ri[WS(rs, 19)];					TY = ii[WS(rs, 19)];					TL = ri[WS(rs, 14)];					TI = FMA(Tl, TH, TG);					T3w = Ti * TH;					TX = Tt * TW;					T2M = Tt * TY;					TM = TK * TL;					T3x = FNMS(Tl, TF, T3w);					TZ = FMA(Tv, TY, TX);					T2N = FNMS(Tv, TW, T2M);					TP = ii[WS(rs, 14)];					TS = ri[WS(rs, 9)];					TU = ii[WS(rs, 9)];				   }			      }			 }			 {			      E T27, T26, T28, T3p, T2p, T39, T29, T2e, T2i;			      {				   E T22, T23, T25, T2l, T2o, T3o, T2m, T38;				   {					E TR, T2J, T3z, TV, T2L, T4i, T3A;					T22 = ri[WS(rs, 12)];					{					     E TQ, T3y, TT, T2K;					     TQ = FMA(TO, TP, TM);					     T3y = TK * TP;					     TT = T3 * TS;					     T2K = T3 * TU;					     TR = TI + TQ;					     T2J = TI - TQ;					     T3z = FNMS(TO, TL, T3y);					     TV = FMA(T6, TU, TT);					     T2L = FNMS(T6, TS, T2K);					     T23 = T21 * T22;					}					T4i = T3x + T3z;					T3A = T3x - T3z;					{					     E T10, T3B, T4j, T2O;					     T10 = TV + TZ;					     T3B = TV - TZ;					     T4j = T2L + T2N;					     T2O = T2L - T2N;					     T3C = T3A + T3B;					     T3Z = T3A - T3B;					     T11 = TR - T10;					     T2v = TR + T10;					     T2P = T2J - T2O;					     T3P = T2J + T2O;					     T4k = T4i - T4j;					     T4v = T4i + T4j;					     T25 = ii[WS(rs, 12)];					}				   }				   T2l = ri[WS(rs, 7)];				   T2o = ii[WS(rs, 7)];				   T27 = ri[WS(rs, 2)];				   T26 = FMA(T24, T25, T23);				   T3o = T21 * T25;				   T2m = T2k * T2l;				   T38 = T2k * T2o;				   T28 = T1n * T27;				   T3p = FNMS(T24, T22, T3o);				   T2p = FMA(T2n, T2o, T2m);				   T39 = FNMS(T2n, T2l, T38);				   T29 = ii[WS(rs, 2)];				   T2e = ri[WS(rs, 17)];				   T2i = ii[WS(rs, 17)];			      }			      {				   E T1I, T1F, T1J, T3i, T1Y, T32, T1M, T1Q, T1T;				   {					E T1B, T1C, T1E, T1V, T1X, T3h, T1W, T31;					{					     E T2b, T35, T3r, T2j, T37, T4e, T3s;					     T1B = ri[WS(rs, 8)];					     {						  E T2a, T3q, T2f, T36;						  T2a = FMA(T1p, T29, T28);						  T3q = T1n * T29;						  T2f = T2d * T2e;						  T36 = T2d * T2i;						  T2b = T26 + T2a;						  T35 = T26 - T2a;						  T3r = FNMS(T1p, T27, T3q);						  T2j = FMA(T2h, T2i, T2f);						  T37 = FNMS(T2h, T2e, T36);						  T1C = T1A * T1B;					     }					     T4e = T3p + T3r;					     T3s = T3p - T3r;					     {						  E T2q, T3t, T4f, T3a;						  T2q = T2j + T2p;						  T3t = T2j - T2p;						  T4f = T37 + T39;						  T3a = T37 - T39;						  T3u = T3s + T3t;						  T43 = T3s - T3t;						  T2r = T2b - T2q;						  T2z = T2b + T2q;						  T3b = T35 - T3a;						  T3T = T35 + T3a;						  T4g = T4e - T4f;						  T4z = T4e + T4f;						  T1E = ii[WS(rs, 8)];					     }					}					T1V = ri[WS(rs, 3)];					T1X = ii[WS(rs, 3)];					T1I = ri[WS(rs, 18)];					T1F = FMA(T1D, T1E, T1C);					T3h = T1A * T1E;					T1W = Tf * T1V;					T31 = Tf * T1X;					T1J = T1H * T1I;					T3i = FNMS(T1D, T1B, T3h);					T1Y = FMA(Th, T1X, T1W);					T32 = FNMS(Th, T1V, T31);					T1M = ii[WS(rs, 18)];					T1Q = ri[WS(rs, 13)];					T1T = ii[WS(rs, 13)];				   }				   {					E T14, T15, T18, T1r, T1v, T3D, T1s, T2T;					{					     E T1O, T2Y, T3k, T1U, T30, T4b, T3l;					     T14 = ri[WS(rs, 16)];					     {						  E T1N, T3j, T1R, T2Z;						  T1N = FMA(T1L, T1M, T1J);						  T3j = T1H * T1M;						  T1R = T1P * T1Q;						  T2Z = T1P * T1T;						  T1O = T1F + T1N;						  T2Y = T1F - T1N;						  T3k = FNMS(T1L, T1I, T3j);						  T1U = FMA(T1S, T1T, T1R);						  T30 = FNMS(T1S, T1Q, T2Z);						  T15 = T13 * T14;					     }					     T4b = T3i + T3k;					     T3l = T3i - T3k;					     {						  E T1Z, T3m, T4c, T33;						  T1Z = T1U + T1Y;						  T3m = T1U - T1Y;						  T4c = T30 + T32;						  T33 = T30 - T32;						  T3n = T3l + T3m;						  T42 = T3l - T3m;						  T20 = T1O - T1Z;						  T2y = T1O + T1Z;						  T34 = T2Y - T33;						  T3S = T2Y + T33;						  T4d = T4b - T4c;						  T4y = T4b + T4c;						  T18 = ii[WS(rs, 16)];					     }					}					T1r = ri[WS(rs, 11)];					T1v = ii[WS(rs, 11)];					T1c = ri[WS(rs, 6)];					T19 = FMA(T17, T18, T15);					T3D = T13 * T18;					T1s = T1q * T1r;					T2T = T1q * T1v;					T1d = T1b * T1c;					T3E = FNMS(T17, T14, T3D);					T1w = FMA(T1u, T1v, T1s);					T2U = FNMS(T1u, T1r, T2T);					T1g = ii[WS(rs, 6)];					T1j = ri[WS(rs, 1)];					T1l = ii[WS(rs, 1)];				   }			      }			 }		    }		    {			 E T3J, T40, T2W, T3Q, T4M, T4E, T4F, T4U, T4S;			 {			      E T4X, T2u, T2w, T4w, T4W, T4r, T4p, T54, T56, T4V, T4a, T4q;			      {				   E T4h, TE, T4n, T53, T1z, T2s, T52;				   {					E T1i, T2Q, T3G, T1m, T2S, T4l, T3H;					T4h = T4d - T4g;					T4X = T4d + T4g;					{					     E T1h, T3F, T1k, T2R;					     T1h = FMA(T1f, T1g, T1d);					     T3F = T1b * T1g;					     T1k = T2 * T1j;					     T2R = T2 * T1l;					     T1i = T19 + T1h;					     T2Q = T19 - T1h;					     T3G = FNMS(T1f, T1c, T3F);					     T1m = FMA(T5, T1l, T1k);					     T2S = FNMS(T5, T1j, T2R);					}					TE = Te - TD;					T2u = Te + TD;					T4l = T3E + T3G;					T3H = T3E - T3G;					{					     E T1x, T3I, T4m, T2V, T1y;					     T1x = T1m + T1w;					     T3I = T1m - T1w;					     T4m = T2S + T2U;					     T2V = T2S - T2U;					     T3J = T3H + T3I;					     T40 = T3H - T3I;					     T1y = T1i - T1x;					     T2w = T1i + T1x;					     T2W = T2Q - T2V;					     T3Q = T2Q + T2V;					     T4n = T4l - T4m;					     T4w = T4l + T4m;					     T53 = T11 - T1y;					     T1z = T11 + T1y;					     T2s = T20 + T2r;					     T52 = T20 - T2r;					}				   }				   {					E T49, T48, T4o, T2t;					T4o = T4k - T4n;					T4W = T4k + T4n;					T49 = T1z - T2s;					T2t = T1z + T2s;					T4r = FMA(KP618033988, T4h, T4o);					T4p = FNMS(KP618033988, T4o, T4h);					T54 = FNMS(KP618033988, T53, T52);					T56 = FMA(KP618033988, T52, T53);					ri[WS(rs, 10)] = TE + T2t;					T48 = FNMS(KP250000000, T2t, TE);					T4V = T4L - T4H;					T4M = T4H + T4L;					T4a = FNMS(KP559016994, T49, T48);					T4q = FMA(KP559016994, T49, T48);				   }			      }			      {				   E T2x, T4Q, T4B, T4D, T4R, T2A, T51, T55;				   {					E T4x, T50, T4Y, T4A, T4Z;					T4E = T4v + T4w;					T4x = T4v - T4w;					ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a);					ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a);					ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q);					ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q);					T50 = T4W - T4X;					T4Y = T4W + T4X;					T4A = T4y - T4z;					T4F = T4y + T4z;					T2x = T2v + T2w;					T4Q = T2v - T2w;					ii[WS(rs, 10)] = T4Y + T4V;					T4Z = FNMS(KP250000000, T4Y, T4V);					T4B = FMA(KP618033988, T4A, T4x);					T4D = FNMS(KP618033988, T4x, T4A);					T4R = T2y - T2z;					T2A = T2y + T2z;					T51 = FNMS(KP559016994, T50, T4Z);					T55 = FMA(KP559016994, T50, T4Z);				   }				   {					E T4t, T4s, T2B, T4u, T4C;					T2B = T2x + T2A;					T4t = T2x - T2A;					ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51);					ii[WS(rs, 2)] = FMA(KP951056516, T54, T51);					ii[WS(rs, 14)] = FMA(KP951056516, T56, T55);					ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55);					ri[0] = T2u + T2B;					T4s = FNMS(KP250000000, T2B, T2u);					T4u = FMA(KP559016994, T4t, T4s);					T4C = FNMS(KP559016994, T4t, T4s);					T4U = FNMS(KP618033988, T4Q, T4R);					T4S = FMA(KP618033988, T4R, T4Q);					ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u);					ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u);					ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C);					ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C);				   }			      }			 }			 {			      E T3O, T5u, T5w, T5l, T5q, T5o;			      {				   E T5n, T5m, T2I, T4O, T3N, T3L, T2X, T5t, T4N, T5s, T3c, T3v, T3K, T4G;				   T5n = T3n + T3u;				   T3v = T3n - T3u;				   T3K = T3C - T3J;				   T5m = T3C + T3J;				   T3O = T2C + T2H;				   T2I = T2C - T2H;				   T4O = T4E - T4F;				   T4G = T4E + T4F;				   T3N = FMA(KP618033988, T3v, T3K);				   T3L = FNMS(KP618033988, T3K, T3v);				   T2X = T2P + T2W;				   T5t = T2P - T2W;				   ii[0] = T4G + T4M;				   T4N = FNMS(KP250000000, T4G, T4M);				   T5s = T34 - T3b;				   T3c = T34 + T3b;				   {					E T3f, T3e, T4P, T4T, T3d, T3M, T3g;					T4P = FMA(KP559016994, T4O, T4N);					T4T = FNMS(KP559016994, T4O, T4N);					T3f = T2X - T3c;					T3d = T2X + T3c;					ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P);					ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P);					ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T);					ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T);					ri[WS(rs, 15)] = T2I + T3d;					T3e = FNMS(KP250000000, T3d, T2I);					T5u = FNMS(KP618033988, T5t, T5s);					T5w = FMA(KP618033988, T5s, T5t);					T5l = T58 + T57;					T59 = T57 - T58;					T3M = FMA(KP559016994, T3f, T3e);					T3g = FNMS(KP559016994, T3f, T3e);					ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g);					ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g);					ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M);					ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M);					T5q = T5m - T5n;					T5o = T5m + T5n;				   }			      }			      {				   E T5a, T5b, T47, T45, T5g, T5h, T3V, T3X, T41, T44, T5p, T3W, T46, T3Y;				   T5a = T3Z + T40;				   T41 = T3Z - T40;				   T44 = T42 - T43;				   T5b = T42 + T43;				   ii[WS(rs, 15)] = T5o + T5l;				   T5p = FNMS(KP250000000, T5o, T5l);				   T47 = FNMS(KP618033988, T41, T44);				   T45 = FMA(KP618033988, T44, T41);				   {					E T5r, T5v, T3R, T3U;					T5r = FNMS(KP559016994, T5q, T5p);					T5v = FMA(KP559016994, T5q, T5p);					T3R = T3P + T3Q;					T5g = T3P - T3Q;					T5h = T3S - T3T;					T3U = T3S + T3T;					ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r);					ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r);					ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v);					ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v);					T3V = T3R + T3U;					T3X = T3R - T3U;				   }				   ri[WS(rs, 5)] = T3O + T3V;				   T3W = FNMS(KP250000000, T3V, T3O);				   T5i = FMA(KP618033988, T5h, T5g);				   T5k = FNMS(KP618033988, T5g, T5h);				   T46 = FNMS(KP559016994, T3X, T3W);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -