⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_64.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 5 页
字号:
					     T9W = T4w * T4A;					     T4y = T4w * T4x;					     T4D = W[40];					     T4G = W[41];					     T9X = FNMS(T4z, T4x, T9W);					     T4B = FMA(T4z, T4A, T4y);					     T9O = T4D * T4H;					     T4F = T4D * T4E;					}				   }				   {					E T9Y, Tfw, T4C, T9N, T9P, T4I;					T9Y = T9V - T9X;					Tfw = T9V + T9X;					T4C = T4v + T4B;					T9N = T4v - T4B;					T9P = FNMS(T4G, T4E, T9O);					T4I = FMA(T4G, T4H, T4F);					{					     E Tfx, T9S, T9Z, T4P;					     Tfx = T9P + T9R;					     T9S = T9P - T9R;					     T9Z = T4I - T4O;					     T4P = T4I + T4O;					     T9T = T9N - T9S;					     Td7 = T9N + T9S;					     Tfy = Tfw - Tfx;					     ThN = Tfw + Tfx;					     Tfz = T4C - T4P;					     T4Q = T4C + T4P;					     Td6 = T9Y - T9Z;					     Ta0 = T9Y + T9Z;					}				   }			      }			      {				   E T9G, T4W, T9C, T5f, T55, T58, T57, T9I, T52, T9z, T56;				   {					E T5b, T5e, T5d, T9B, T5c;					{					     E T4S, T4V, T4R, T4U, T9F, T4T, T5a;					     T4S = ri[WS(rs, 61)];					     TfN = Tfz + Tfy;					     TfA = Tfy - Tfz;					     Taf = FMA(KP414213562, T9T, Ta0);					     Ta1 = FNMS(KP414213562, Ta0, T9T);					     Td8 = FNMS(KP414213562, Td7, Td6);					     Tdh = FMA(KP414213562, Td6, Td7);					     T4V = ii[WS(rs, 61)];					     T4R = W[120];					     T4U = W[121];					     T5b = ri[WS(rs, 45)];					     T5e = ii[WS(rs, 45)];					     T9F = T4R * T4V;					     T4T = T4R * T4S;					     T5a = W[88];					     T5d = W[89];					     T9G = FNMS(T4U, T4S, T9F);					     T4W = FMA(T4U, T4V, T4T);					     T9B = T5a * T5e;					     T5c = T5a * T5b;					}					{					     E T4Y, T51, T4X, T50, T9H, T4Z, T54;					     T4Y = ri[WS(rs, 29)];					     T51 = ii[WS(rs, 29)];					     T9C = FNMS(T5d, T5b, T9B);					     T5f = FMA(T5d, T5e, T5c);					     T4X = W[56];					     T50 = W[57];					     T55 = ri[WS(rs, 13)];					     T58 = ii[WS(rs, 13)];					     T9H = T4X * T51;					     T4Z = T4X * T4Y;					     T54 = W[24];					     T57 = W[25];					     T9I = FNMS(T50, T4Y, T9H);					     T52 = FMA(T50, T51, T4Z);					     T9z = T54 * T58;					     T56 = T54 * T55;					}				   }				   {					E T9J, TfC, T53, T9y, T9A, T59;					T9J = T9G - T9I;					TfC = T9G + T9I;					T53 = T4W + T52;					T9y = T4W - T52;					T9A = FNMS(T57, T55, T9z);					T59 = FMA(T57, T58, T56);					{					     E TfD, T9D, T9K, T5g;					     TfD = T9A + T9C;					     T9D = T9A - T9C;					     T9K = T59 - T5f;					     T5g = T59 + T5f;					     T9E = T9y - T9D;					     Tda = T9y + T9D;					     TfE = TfC - TfD;					     ThO = TfC + TfD;					     TfB = T53 - T5g;					     T5h = T53 + T5g;					     Td9 = T9J - T9K;					     T9L = T9J + T9K;					}				   }			      }			 }			 {			      E Tb2, Tdq, TfZ, Tg0, Tdp, Tb9;			      {				   E Tb4, T6i, Tb0, T6B, T6r, T6u, T6t, Tb6, T6o, TaX, T6s;				   {					E T6x, T6A, T6z, TaZ, T6y;					{					     E T6e, T6h, T6d, T6g, Tb3, T6f, T6w;					     T6e = ri[WS(rs, 3)];					     TfO = TfB - TfE;					     TfF = TfB + TfE;					     Tag = FNMS(KP414213562, T9E, T9L);					     T9M = FMA(KP414213562, T9L, T9E);					     Tdb = FMA(KP414213562, Tda, Td9);					     Tdi = FNMS(KP414213562, Td9, Tda);					     T6h = ii[WS(rs, 3)];					     T6d = W[4];					     T6g = W[5];					     T6x = ri[WS(rs, 51)];					     T6A = ii[WS(rs, 51)];					     Tb3 = T6d * T6h;					     T6f = T6d * T6e;					     T6w = W[100];					     T6z = W[101];					     Tb4 = FNMS(T6g, T6e, Tb3);					     T6i = FMA(T6g, T6h, T6f);					     TaZ = T6w * T6A;					     T6y = T6w * T6x;					}					{					     E T6k, T6n, T6j, T6m, Tb5, T6l, T6q;					     T6k = ri[WS(rs, 35)];					     T6n = ii[WS(rs, 35)];					     Tb0 = FNMS(T6z, T6x, TaZ);					     T6B = FMA(T6z, T6A, T6y);					     T6j = W[68];					     T6m = W[69];					     T6r = ri[WS(rs, 19)];					     T6u = ii[WS(rs, 19)];					     Tb5 = T6j * T6n;					     T6l = T6j * T6k;					     T6q = W[36];					     T6t = W[37];					     Tb6 = FNMS(T6m, T6k, Tb5);					     T6o = FMA(T6m, T6n, T6l);					     TaX = T6q * T6u;					     T6s = T6q * T6r;					}				   }				   {					E Tb7, TfX, T6p, TaW, TaY, T6v;					Tb7 = Tb4 - Tb6;					TfX = Tb4 + Tb6;					T6p = T6i + T6o;					TaW = T6i - T6o;					TaY = FNMS(T6t, T6r, TaX);					T6v = FMA(T6t, T6u, T6s);					{					     E TfY, Tb1, Tb8, T6C;					     TfY = TaY + Tb0;					     Tb1 = TaY - Tb0;					     Tb8 = T6v - T6B;					     T6C = T6v + T6B;					     Tb2 = TaW - Tb1;					     Tdq = TaW + Tb1;					     TfZ = TfX - TfY;					     ThY = TfX + TfY;					     Tg0 = T6p - T6C;					     T6D = T6p + T6C;					     Tdp = Tb7 - Tb8;					     Tb9 = Tb7 + Tb8;					}				   }			      }			      {				   E TaP, T6J, TaL, T72, T6S, T6V, T6U, TaR, T6P, TaI, T6T;				   {					E T6Y, T71, T70, TaK, T6Z;					{					     E T6F, T6I, T6E, T6H, TaO, T6G, T6X;					     T6F = ri[WS(rs, 59)];					     Tge = Tg0 + TfZ;					     Tg1 = TfZ - Tg0;					     Tbo = FMA(KP414213562, Tb2, Tb9);					     Tba = FNMS(KP414213562, Tb9, Tb2);					     Tdr = FNMS(KP414213562, Tdq, Tdp);					     TdA = FMA(KP414213562, Tdp, Tdq);					     T6I = ii[WS(rs, 59)];					     T6E = W[116];					     T6H = W[117];					     T6Y = ri[WS(rs, 43)];					     T71 = ii[WS(rs, 43)];					     TaO = T6E * T6I;					     T6G = T6E * T6F;					     T6X = W[84];					     T70 = W[85];					     TaP = FNMS(T6H, T6F, TaO);					     T6J = FMA(T6H, T6I, T6G);					     TaK = T6X * T71;					     T6Z = T6X * T6Y;					}					{					     E T6L, T6O, T6K, T6N, TaQ, T6M, T6R;					     T6L = ri[WS(rs, 27)];					     T6O = ii[WS(rs, 27)];					     TaL = FNMS(T70, T6Y, TaK);					     T72 = FMA(T70, T71, T6Z);					     T6K = W[52];					     T6N = W[53];					     T6S = ri[WS(rs, 11)];					     T6V = ii[WS(rs, 11)];					     TaQ = T6K * T6O;					     T6M = T6K * T6L;					     T6R = W[20];					     T6U = W[21];					     TaR = FNMS(T6N, T6L, TaQ);					     T6P = FMA(T6N, T6O, T6M);					     TaI = T6R * T6V;					     T6T = T6R * T6S;					}				   }				   {					E TaS, Tg3, T6Q, TaH, TaJ, T6W;					TaS = TaP - TaR;					Tg3 = TaP + TaR;					T6Q = T6J + T6P;					TaH = T6J - T6P;					TaJ = FNMS(T6U, T6S, TaI);					T6W = FMA(T6U, T6V, T6T);					{					     E Tg4, TaM, TaT, T73;					     Tg4 = TaJ + TaL;					     TaM = TaJ - TaL;					     TaT = T6W - T72;					     T73 = T6W + T72;					     TaN = TaH - TaM;					     Tdt = TaH + TaM;					     Tg5 = Tg3 - Tg4;					     ThZ = Tg3 + Tg4;					     Tg2 = T6Q - T73;					     T74 = T6Q + T73;					     Tds = TaS - TaT;					     TaU = TaS + TaT;					}				   }			      }			 }		    }	       }	       {		    E Tgf, Tg6, Tbp, TaV, Tdu, TdB, Tje, Tjd, TjO, TjN;		    {			 E Thq, Tj7, Thy, ThA, Tht, Tj8, Thx, ThD, ThX, ThV, ThU, Ti0, ThM, ThK, ThJ;			 E ThP, TiI, TiZ, TiL, Tj0;			 {			      E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiK, TiC, TiG, T5j, Tit, Tiw;			      E TiJ;			      {				   E TiO, TiW, Tip, Tiq;				   {					E TO, T1H, T2B, T3u;					Thq = Tm - TN;					TO = Tm + TN;					Tgf = Tg2 - Tg5;					Tg6 = Tg2 + Tg5;					Tbp = FNMS(KP414213562, TaN, TaU);					TaV = FMA(KP414213562, TaU, TaN);					Tdu = FMA(KP414213562, Tdt, Tds);					TdB = FNMS(KP414213562, Tds, Tdt);					T1H = T1f + T1G;					Tj7 = T1G - T1f;					Thy = T29 - T2A;					T2B = T29 + T2A;					T3u = T32 + T3t;					ThA = T32 - T3t;					Tht = Thr - Ths;					TiO = Thr + Ths;					Tio = TO - T1H;					T1I = TO + T1H;					Tj1 = T3u - T2B;					T3v = T2B + T3u;					TiW = TiP + TiV;					Tj8 = TiV - TiP;				   }				   Thx = Thv - Thw;				   Tip = Thv + Thw;				   Tiq = ThB + ThC;				   ThD = ThB - ThC;				   {					E T6c, T75, Tiz, TiA;					ThX = T5K - T6b;					T6c = T5K + T6b;					Tj2 = TiW - TiO;					TiX = TiO + TiW;					TiN = Tip + Tiq;					Tir = Tip - Tiq;					T75 = T6D + T74;					ThV = T74 - T6D;					ThU = ThS - ThT;					Tiz = ThS + ThT;					TiA = ThY + ThZ;					Ti0 = ThY - ThZ;					{					     E T4p, Tiy, TiB, T5i, Tiu, Tiv;					     ThM = T3X - T4o;					     T4p = T3X + T4o;					     T76 = T6c + T75;					     Tiy = T6c - T75;					     TiK = Tiz + TiA;					     TiB = Tiz - TiA;					     T5i = T4Q + T5h;					     ThK = T5h - T4Q;					     ThJ = ThH - ThI;					     Tiu = ThH + ThI;					     Tiv = ThN + ThO;					     ThP = ThN - ThO;					     TiC = Tiy - TiB;					     TiG = Tiy + TiB;					     T5j = T4p + T5i;					     Tit = T4p - T5i;					     Tiw = Tiu - Tiv;					     TiJ = Tiu + Tiv;					}				   }			      }			      {				   E TiE, Tis, TiD, Tj6, Tj5, Tj3, Tj4, TiH;				   {					E T3w, TiF, Tix, T77, TiM, TiY;					TiI = T1I - T3v;					T3w = T1I + T3v;					TiF = Tiw - Tit;					Tix = Tit + Tiw;					T77 = T5j + T76;					TiZ = T76 - T5j;					TiL = TiJ - TiK;					TiM = TiJ + TiK;					TiY = TiN + TiX;					Tj0 = TiX - TiN;					TiE = Tio - Tir;					Tis = Tio + Tir;					ri[0] = T3w + T77;					ri[WS(rs, 32)] = T3w - T77;					ii[WS(rs, 32)] = TiY - TiM;					ii[0] = TiM + TiY;					TiD = Tix + TiC;					Tj6 = TiC - Tix;					Tj5 = Tj2 - Tj1;					Tj3 = Tj1 + Tj2;					Tj4 = TiF + TiG;					TiH = TiF - TiG;				   }				   ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);				   ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);				   ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);				   ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);				   ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);				   ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);				   ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);				   ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);			      }			 }			 {			      E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tih, ThW, Tif, Til, Ti5, ThR;			      ri[WS(rs, 16)] = TiI + TiL;			      ri[WS(rs, 48)] = TiI - TiL;			      ii[WS(rs, 48)] = Tj0 - TiZ;			      ii[WS(rs, 16)] = TiZ + Tj0;			      Ti8 = Thq + Tht;			      Thu = Thq - Tht;			      Tjf = Tj8 - Tj7;			      Tj9 = Tj7 + Tj8;			      {				   E Tie, ThL, Tid, ThQ;				   {					E Ti9, Thz, Tia, ThE;					Ti9 = Thy + Thx;					Thz = Thx - Thy;					Tia = ThA - ThD;					ThE = ThA + ThD;					Tib = Ti9 + Tia;					Tjg = Tia - Ti9;					Tja = Thz + ThE;					ThF = Thz - ThE;					Tie = ThJ + ThK;					ThL = ThJ - ThK;				   }				   Tid = ThM + ThP;				   ThQ = ThM - ThP;				   Tih = ThU + ThV;				   ThW = ThU - ThV;				   Tif = FMA(KP414213562, Tie, Tid);				   Til = FNMS(KP414213562, Tid, Tie);				   Ti5 = FNMS(KP414213562, ThL, ThQ);				   ThR = FMA(KP414213562, ThQ, ThL);			      }			      {				   E Ti4, ThG, Tjh, Tjj, Tig, Ti1;				   Ti4 = FNMS(KP707106781, ThF, Thu);				   ThG = FMA(KP707106781, ThF, Thu);				   Tjh = FMA(KP707106781, Tjg, Tjf);				   Tjj = FNMS(KP707106781, Tjg, Tjf);				   Tig = ThX + Ti0;				   Ti1 = ThX - Ti0;				   {					E Tik, Tjb, Tjc, Tin;					{					     E Tic, Tim, Ti6, Ti2, Tij, Tii;					     Tik = FNMS(KP707106781, Tib, Ti8);					     Tic = FMA(KP707106781, Tib, Ti8);					     Tii = FNMS(KP414213562, Tih, Tig);					     Tim = FMA(KP414213562, Tig, Tih);					     Ti6 = FMA(KP414213562, ThW, Ti1);					     Ti2 = FNMS(KP414213562, Ti1, ThW);					     Tij = Tif + Tii;					     Tje = Tii - Tif;					     Tjd = FNMS(KP707106781, Tja, Tj9);					     Tjb = FMA(KP707106781, Tja, Tj9);					     {						  E Ti7, Tji, Tjk, Ti3;						  Ti7 = Ti5 + Ti6;						  Tji = Ti6 - Ti5;						  Tjk = ThR + Ti2;						  Ti3 = ThR - Ti2;						  ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);						  ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);						  ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);						  ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);						  ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);						  ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);						  ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);						  ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);						  ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);						  ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);						  Tjc = Til + Tim;						  Tin = Til - Tim;					     }					}					ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);					ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -