⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_64.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 5 页
字号:
					T7I = T7C - T7H;					TcF = T7C + T7H;					TeU = TeS - TeT;					Thr = TeS + TeT;					T7B = T7z + T7A;					TcG = T7z - T7A;					T1f = T11 + T1e;					TeR = T11 - T1e;					T2C = W[122];				   }				   T2F = W[123];				   T2W = ri[WS(rs, 46)];				   T2Z = ii[WS(rs, 46)];				   T8A = T2C * T2G;				   T2E = T2C * T2D;				   T2V = W[90];				   T2Y = W[91];				   T8B = FNMS(T2F, T2D, T8A);				   T2H = FMA(T2F, T2G, T2E);				   T90 = T2V * T2Z;				   T2X = T2V * T2W;			      }			      {				   E T2J, T2M, T2I, T2L, T8C, T2K, T2P;				   T2J = ri[WS(rs, 30)];				   T2M = ii[WS(rs, 30)];				   T91 = FNMS(T2Y, T2W, T90);				   T30 = FMA(T2Y, T2Z, T2X);				   T2I = W[58];				   T2L = W[59];				   T2Q = ri[WS(rs, 14)];				   T2T = ii[WS(rs, 14)];				   T8C = T2I * T2M;				   T2K = T2I * T2J;				   T2P = W[26];				   T2S = W[27];				   T8D = FNMS(T2L, T2J, T8C);				   T2N = FMA(T2L, T2M, T2K);				   T8Y = T2P * T2T;				   T2R = T2P * T2Q;			      }			 }			 {			      E T8E, Tfe, T2O, T8X, T8Z, T2U;			      T8E = T8B - T8D;			      Tfe = T8B + T8D;			      T2O = T2H + T2N;			      T8X = T2H - T2N;			      T8Z = FNMS(T2S, T2Q, T8Y);			      T2U = FMA(T2S, T2T, T2R);			      {				   E T92, Tff, T8F, T31;				   T92 = T8Z - T91;				   Tff = T8Z + T91;				   T8F = T2U - T30;				   T31 = T2U + T30;				   Tfg = Tfe - Tff;				   ThB = Tfe + Tff;				   T8G = T8E + T8F;				   TcU = T8E - T8F;				   T32 = T2O + T31;				   Tfj = T2O - T31;				   TcX = T8X + T92;				   T93 = T8X - T92;			      }			 }		    }		    {			 E T9c, T3C, Ta8, T3V, T3L, T3O, T3N, T9e, T3I, Ta5, T3M;			 {			      E T3R, T3U, T3T, Ta7, T3S;			      {				   E T3y, T3B, T3x, T3A, T9b, T3z, T3Q;				   T3y = ri[WS(rs, 1)];				   T3B = ii[WS(rs, 1)];				   T3x = W[0];				   T3A = W[1];				   T3R = ri[WS(rs, 49)];				   T3U = ii[WS(rs, 49)];				   T9b = T3x * T3B;				   T3z = T3x * T3y;				   T3Q = W[96];				   T3T = W[97];				   T9c = FNMS(T3A, T3y, T9b);				   T3C = FMA(T3A, T3B, T3z);				   Ta7 = T3Q * T3U;				   T3S = T3Q * T3R;			      }			      {				   E T3E, T3H, T3D, T3G, T9d, T3F, T3K;				   T3E = ri[WS(rs, 33)];				   T3H = ii[WS(rs, 33)];				   Ta8 = FNMS(T3T, T3R, Ta7);				   T3V = FMA(T3T, T3U, T3S);				   T3D = W[64];				   T3G = W[65];				   T3L = ri[WS(rs, 17)];				   T3O = ii[WS(rs, 17)];				   T9d = T3D * T3H;				   T3F = T3D * T3E;				   T3K = W[32];				   T3N = W[33];				   T9e = FNMS(T3G, T3E, T9d);				   T3I = FMA(T3G, T3H, T3F);				   Ta5 = T3K * T3O;				   T3M = T3K * T3L;			      }			 }			 {			      E T9f, Tfr, T3J, Ta4, Ta6, T3P;			      T9f = T9c - T9e;			      Tfr = T9c + T9e;			      T3J = T3C + T3I;			      Ta4 = T3C - T3I;			      Ta6 = FNMS(T3N, T3L, Ta5);			      T3P = FMA(T3N, T3O, T3M);			      {				   E Ta9, Tfs, T9g, T3W;				   Ta9 = Ta6 - Ta8;				   Tfs = Ta6 + Ta8;				   T9g = T3P - T3V;				   T3W = T3P + T3V;				   Tft = Tfr - Tfs;				   ThH = Tfr + Tfs;				   T9h = T9f + T9g;				   Td3 = T9f - T9g;				   T3X = T3J + T3W;				   TfI = T3J - T3W;				   Tde = Ta4 + Ta9;				   Taa = Ta4 - Ta9;			      }			 }		    }	       }	       {		    E TaC, T69, Taw, Tga, T5X, Tar, TaA, T63;		    {			 E T8S, T3r, T8M, Tfk, T3f, T8H, T8Q, T3l;			 {			      E T8k, T8f, T8w, T8e;			      {				   E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p;				   {					E T2u, T2x, T2w, T8i, T2v;					{					     E T2b, T2e, T2a, T2d, T89, T2c, T2t;					     T2b = ri[WS(rs, 10)];					     T2e = ii[WS(rs, 10)];					     T2a = W[18];					     T2d = W[19];					     T2u = ri[WS(rs, 26)];					     T2x = ii[WS(rs, 26)];					     T89 = T2a * T2e;					     T2c = T2a * T2b;					     T2t = W[50];					     T2w = W[51];					     T8a = FNMS(T2d, T2b, T89);					     T2f = FMA(T2d, T2e, T2c);					     T8i = T2t * T2x;					     T2v = T2t * T2u;					}					{					     E T2h, T2k, T2g, T2j, T8b, T2i, T2n;					     T2h = ri[WS(rs, 42)];					     T2k = ii[WS(rs, 42)];					     T8j = FNMS(T2w, T2u, T8i);					     T2y = FMA(T2w, T2x, T2v);					     T2g = W[82];					     T2j = W[83];					     T2o = ri[WS(rs, 58)];					     T2r = ii[WS(rs, 58)];					     T8b = T2g * T2k;					     T2i = T2g * T2h;					     T2n = W[114];					     T2q = W[115];					     T8c = FNMS(T2j, T2h, T8b);					     T2l = FMA(T2j, T2k, T2i);					     T8g = T2n * T2r;					     T2p = T2n * T2o;					}				   }				   {					E T8d, Tf9, T2m, T88, T8h, T2s, Tfa, T2z;					T8d = T8a - T8c;					Tf9 = T8a + T8c;					T2m = T2f + T2l;					T88 = T2f - T2l;					T8h = FNMS(T2q, T2o, T8g);					T2s = FMA(T2q, T2r, T2p);					T8k = T8h - T8j;					Tfa = T8h + T8j;					T2z = T2s + T2y;					T8f = T2s - T2y;					T8w = T8d - T88;					T8e = T88 + T8d;					Thw = Tf9 + Tfa;					Tfb = Tf9 - Tfa;					Tf6 = T2z - T2m;					T2A = T2m + T2z;				   }			      }			      {				   E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i;				   {					E T3n, T3q, T3m, T3p;					{					     E T34, T37, T33, T8v, T8l, T36, T8I, T35;					     T34 = ri[WS(rs, 6)];					     T37 = ii[WS(rs, 6)];					     T33 = W[10];					     T8v = T8f + T8k;					     T8l = T8f - T8k;					     T36 = W[11];					     T8I = T33 * T37;					     T35 = T33 * T34;					     T8x = T8v - T8w;					     TcO = T8w + T8v;					     T8m = T8e - T8l;					     TcR = T8e + T8l;					     T38 = FMA(T36, T37, T35);					     T8J = FNMS(T36, T34, T8I);					}					T3n = ri[WS(rs, 22)];					T3q = ii[WS(rs, 22)];					T3m = W[42];					T3p = W[43];					{					     E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39;					     T3a = ri[WS(rs, 38)];					     T3d = ii[WS(rs, 38)];					     T8R = T3m * T3q;					     T3o = T3m * T3n;					     T39 = W[74];					     T3c = W[75];					     T8S = FNMS(T3p, T3n, T8R);					     T3r = FMA(T3p, T3q, T3o);					     T8K = T39 * T3d;					     T3b = T39 * T3a;					     T3h = ri[WS(rs, 54)];					     T3k = ii[WS(rs, 54)];					     T8L = FNMS(T3c, T3a, T8K);					     T3e = FMA(T3c, T3d, T3b);					     T3g = W[106];					     T3j = W[107];					}				   }				   T8M = T8J - T8L;				   Tfk = T8J + T8L;				   T3f = T38 + T3e;				   T8H = T38 - T3e;				   T8P = T3g * T3k;				   T3i = T3g * T3h;				   T8Q = FNMS(T3j, T3h, T8P);				   T3l = FMA(T3j, T3k, T3i);			      }			 }			 {			      E T9u, T9p, Tac, T9o;			      {				   E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d;				   {					E T4i, T4l, T4k, T9s, T4j;					{					     E T3Z, T42, T3Y, T41, T9j, T40, T4h;					     {						  E T95, T8N, T8T, Tfl, T8O, T3s, T8U, T94;						  T3Z = ri[WS(rs, 9)];						  T95 = T8M - T8H;						  T8N = T8H + T8M;						  T8T = T8Q - T8S;						  Tfl = T8Q + T8S;						  T8O = T3l - T3r;						  T3s = T3l + T3r;						  T42 = ii[WS(rs, 9)];						  Tfm = Tfk - Tfl;						  ThC = Tfk + Tfl;						  T8U = T8O - T8T;						  T94 = T8O + T8T;						  T3t = T3f + T3s;						  Tfh = T3s - T3f;						  T96 = T94 - T95;						  TcV = T95 + T94;						  T8V = T8N - T8U;						  TcY = T8N + T8U;						  T3Y = W[16];					     }					     T41 = W[17];					     T4i = ri[WS(rs, 25)];					     T4l = ii[WS(rs, 25)];					     T9j = T3Y * T42;					     T40 = T3Y * T3Z;					     T4h = W[48];					     T4k = W[49];					     T9k = FNMS(T41, T3Z, T9j);					     T43 = FMA(T41, T42, T40);					     T9s = T4h * T4l;					     T4j = T4h * T4i;					}					{					     E T45, T48, T44, T47, T9l, T46, T4b;					     T45 = ri[WS(rs, 41)];					     T48 = ii[WS(rs, 41)];					     T9t = FNMS(T4k, T4i, T9s);					     T4m = FMA(T4k, T4l, T4j);					     T44 = W[80];					     T47 = W[81];					     T4c = ri[WS(rs, 57)];					     T4f = ii[WS(rs, 57)];					     T9l = T44 * T48;					     T46 = T44 * T45;					     T4b = W[112];					     T4e = W[113];					     T9m = FNMS(T47, T45, T9l);					     T49 = FMA(T47, T48, T46);					     T9q = T4b * T4f;					     T4d = T4b * T4c;					}				   }				   {					E T9n, TfJ, T4a, T9i, T9r, T4g, TfK, T4n;					T9n = T9k - T9m;					TfJ = T9k + T9m;					T4a = T43 + T49;					T9i = T43 - T49;					T9r = FNMS(T4e, T4c, T9q);					T4g = FMA(T4e, T4f, T4d);					T9u = T9r - T9t;					TfK = T9r + T9t;					T4n = T4g + T4m;					T9p = T4g - T4m;					Tac = T9n - T9i;					T9o = T9i + T9n;					ThI = TfJ + TfK;					TfL = TfJ - TfK;					Tfu = T4n - T4a;					T4o = T4a + T4n;				   }			      }			      {				   E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60;				   {					E T65, T68, T64, T67;					{					     E T5M, T5P, T5L, Tab, T9v, T5O, Tas, T5N;					     T5M = ri[WS(rs, 7)];					     T5P = ii[WS(rs, 7)];					     T5L = W[12];					     Tab = T9p + T9u;					     T9v = T9p - T9u;					     T5O = W[13];					     Tas = T5L * T5P;					     T5N = T5L * T5M;					     Tad = Tab - Tac;					     Td4 = Tac + Tab;					     T9w = T9o - T9v;					     Tdf = T9o + T9v;					     T5Q = FMA(T5O, T5P, T5N);					     Tat = FNMS(T5O, T5M, Tas);					}					T65 = ri[WS(rs, 23)];					T68 = ii[WS(rs, 23)];					T64 = W[44];					T67 = W[45];					{					     E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R;					     T5S = ri[WS(rs, 39)];					     T5V = ii[WS(rs, 39)];					     TaB = T64 * T68;					     T66 = T64 * T65;					     T5R = W[76];					     T5U = W[77];					     TaC = FNMS(T67, T65, TaB);					     T69 = FMA(T67, T68, T66);					     Tau = T5R * T5V;					     T5T = T5R * T5S;					     T5Z = ri[WS(rs, 55)];					     T62 = ii[WS(rs, 55)];					     Tav = FNMS(T5U, T5S, Tau);					     T5W = FMA(T5U, T5V, T5T);					     T5Y = W[108];					     T61 = W[109];					}				   }				   Taw = Tat - Tav;				   Tga = Tat + Tav;				   T5X = T5Q + T5W;				   Tar = T5Q - T5W;				   Taz = T5Y * T62;				   T60 = T5Y * T5Z;				   TaA = FNMS(T61, T5Z, Taz);				   T63 = FMA(T61, T62, T60);			      }			 }		    }		    {			 E T9E, Tda, TfE, TfB, Td9, T9L;			 {			      E T9T, Td7, Tfy, Tfz, Td6, Ta0;			      {				   E T9V, T4v, T9R, T4O, T4E, T4H, T4G, T9X, T4B, T9O, T4F;				   {					E T4K, T4N, T4M, T9Q, T4L;					{					     E T4r, T4u, T4q, T4t, T9U, T4s, T4J;					     {						  E Tbl, Tax, TaD, Tgb, Tay, T6a, TaE, Tbk;						  T4r = ri[WS(rs, 5)];						  Tbl = Taw - Tar;						  Tax = Tar + Taw;						  TaD = TaA - TaC;						  Tgb = TaA + TaC;						  Tay = T63 - T69;						  T6a = T63 + T69;						  T4u = ii[WS(rs, 5)];						  Tgc = Tga - Tgb;						  ThT = Tga + Tgb;						  TaE = Tay - TaD;						  Tbk = Tay + TaD;						  T6b = T5X + T6a;						  TfV = T6a - T5X;						  Tbm = Tbk - Tbl;						  Tdn = Tbl + Tbk;						  TaF = Tax - TaE;						  Tdy = Tax + TaE;						  T4q = W[8];					     }					     T4t = W[9];					     T4K = ri[WS(rs, 53)];					     T4N = ii[WS(rs, 53)];					     T9U = T4q * T4u;					     T4s = T4q * T4r;					     T4J = W[104];					     T4M = W[105];					     T9V = FNMS(T4t, T4r, T9U);					     T4v = FMA(T4t, T4u, T4s);					     T9Q = T4J * T4N;					     T4L = T4J * T4K;					}					{					     E T4x, T4A, T4w, T4z, T9W, T4y, T4D;					     T4x = ri[WS(rs, 37)];					     T4A = ii[WS(rs, 37)];					     T9R = FNMS(T4M, T4K, T9Q);					     T4O = FMA(T4M, T4N, T4L);					     T4w = W[72];					     T4z = W[73];					     T4E = ri[WS(rs, 21)];					     T4H = ii[WS(rs, 21)];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -