📄 t1_64.c
字号:
T7I = T7C - T7H; TcF = T7C + T7H; TeU = TeS - TeT; Thr = TeS + TeT; T7B = T7z + T7A; TcG = T7z - T7A; T1f = T11 + T1e; TeR = T11 - T1e; T2C = W[122]; } T2F = W[123]; T2W = ri[WS(rs, 46)]; T2Z = ii[WS(rs, 46)]; T8A = T2C * T2G; T2E = T2C * T2D; T2V = W[90]; T2Y = W[91]; T8B = FNMS(T2F, T2D, T8A); T2H = FMA(T2F, T2G, T2E); T90 = T2V * T2Z; T2X = T2V * T2W; } { E T2J, T2M, T2I, T2L, T8C, T2K, T2P; T2J = ri[WS(rs, 30)]; T2M = ii[WS(rs, 30)]; T91 = FNMS(T2Y, T2W, T90); T30 = FMA(T2Y, T2Z, T2X); T2I = W[58]; T2L = W[59]; T2Q = ri[WS(rs, 14)]; T2T = ii[WS(rs, 14)]; T8C = T2I * T2M; T2K = T2I * T2J; T2P = W[26]; T2S = W[27]; T8D = FNMS(T2L, T2J, T8C); T2N = FMA(T2L, T2M, T2K); T8Y = T2P * T2T; T2R = T2P * T2Q; } } { E T8E, Tfe, T2O, T8X, T8Z, T2U; T8E = T8B - T8D; Tfe = T8B + T8D; T2O = T2H + T2N; T8X = T2H - T2N; T8Z = FNMS(T2S, T2Q, T8Y); T2U = FMA(T2S, T2T, T2R); { E T92, Tff, T8F, T31; T92 = T8Z - T91; Tff = T8Z + T91; T8F = T2U - T30; T31 = T2U + T30; Tfg = Tfe - Tff; ThB = Tfe + Tff; T8G = T8E + T8F; TcU = T8E - T8F; T32 = T2O + T31; Tfj = T2O - T31; TcX = T8X + T92; T93 = T8X - T92; } } } { E T9c, T3C, Ta8, T3V, T3L, T3O, T3N, T9e, T3I, Ta5, T3M; { E T3R, T3U, T3T, Ta7, T3S; { E T3y, T3B, T3x, T3A, T9b, T3z, T3Q; T3y = ri[WS(rs, 1)]; T3B = ii[WS(rs, 1)]; T3x = W[0]; T3A = W[1]; T3R = ri[WS(rs, 49)]; T3U = ii[WS(rs, 49)]; T9b = T3x * T3B; T3z = T3x * T3y; T3Q = W[96]; T3T = W[97]; T9c = FNMS(T3A, T3y, T9b); T3C = FMA(T3A, T3B, T3z); Ta7 = T3Q * T3U; T3S = T3Q * T3R; } { E T3E, T3H, T3D, T3G, T9d, T3F, T3K; T3E = ri[WS(rs, 33)]; T3H = ii[WS(rs, 33)]; Ta8 = FNMS(T3T, T3R, Ta7); T3V = FMA(T3T, T3U, T3S); T3D = W[64]; T3G = W[65]; T3L = ri[WS(rs, 17)]; T3O = ii[WS(rs, 17)]; T9d = T3D * T3H; T3F = T3D * T3E; T3K = W[32]; T3N = W[33]; T9e = FNMS(T3G, T3E, T9d); T3I = FMA(T3G, T3H, T3F); Ta5 = T3K * T3O; T3M = T3K * T3L; } } { E T9f, Tfr, T3J, Ta4, Ta6, T3P; T9f = T9c - T9e; Tfr = T9c + T9e; T3J = T3C + T3I; Ta4 = T3C - T3I; Ta6 = FNMS(T3N, T3L, Ta5); T3P = FMA(T3N, T3O, T3M); { E Ta9, Tfs, T9g, T3W; Ta9 = Ta6 - Ta8; Tfs = Ta6 + Ta8; T9g = T3P - T3V; T3W = T3P + T3V; Tft = Tfr - Tfs; ThH = Tfr + Tfs; T9h = T9f + T9g; Td3 = T9f - T9g; T3X = T3J + T3W; TfI = T3J - T3W; Tde = Ta4 + Ta9; Taa = Ta4 - Ta9; } } } } { E TaC, T69, Taw, Tga, T5X, Tar, TaA, T63; { E T8S, T3r, T8M, Tfk, T3f, T8H, T8Q, T3l; { E T8k, T8f, T8w, T8e; { E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p; { E T2u, T2x, T2w, T8i, T2v; { E T2b, T2e, T2a, T2d, T89, T2c, T2t; T2b = ri[WS(rs, 10)]; T2e = ii[WS(rs, 10)]; T2a = W[18]; T2d = W[19]; T2u = ri[WS(rs, 26)]; T2x = ii[WS(rs, 26)]; T89 = T2a * T2e; T2c = T2a * T2b; T2t = W[50]; T2w = W[51]; T8a = FNMS(T2d, T2b, T89); T2f = FMA(T2d, T2e, T2c); T8i = T2t * T2x; T2v = T2t * T2u; } { E T2h, T2k, T2g, T2j, T8b, T2i, T2n; T2h = ri[WS(rs, 42)]; T2k = ii[WS(rs, 42)]; T8j = FNMS(T2w, T2u, T8i); T2y = FMA(T2w, T2x, T2v); T2g = W[82]; T2j = W[83]; T2o = ri[WS(rs, 58)]; T2r = ii[WS(rs, 58)]; T8b = T2g * T2k; T2i = T2g * T2h; T2n = W[114]; T2q = W[115]; T8c = FNMS(T2j, T2h, T8b); T2l = FMA(T2j, T2k, T2i); T8g = T2n * T2r; T2p = T2n * T2o; } } { E T8d, Tf9, T2m, T88, T8h, T2s, Tfa, T2z; T8d = T8a - T8c; Tf9 = T8a + T8c; T2m = T2f + T2l; T88 = T2f - T2l; T8h = FNMS(T2q, T2o, T8g); T2s = FMA(T2q, T2r, T2p); T8k = T8h - T8j; Tfa = T8h + T8j; T2z = T2s + T2y; T8f = T2s - T2y; T8w = T8d - T88; T8e = T88 + T8d; Thw = Tf9 + Tfa; Tfb = Tf9 - Tfa; Tf6 = T2z - T2m; T2A = T2m + T2z; } } { E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i; { E T3n, T3q, T3m, T3p; { E T34, T37, T33, T8v, T8l, T36, T8I, T35; T34 = ri[WS(rs, 6)]; T37 = ii[WS(rs, 6)]; T33 = W[10]; T8v = T8f + T8k; T8l = T8f - T8k; T36 = W[11]; T8I = T33 * T37; T35 = T33 * T34; T8x = T8v - T8w; TcO = T8w + T8v; T8m = T8e - T8l; TcR = T8e + T8l; T38 = FMA(T36, T37, T35); T8J = FNMS(T36, T34, T8I); } T3n = ri[WS(rs, 22)]; T3q = ii[WS(rs, 22)]; T3m = W[42]; T3p = W[43]; { E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39; T3a = ri[WS(rs, 38)]; T3d = ii[WS(rs, 38)]; T8R = T3m * T3q; T3o = T3m * T3n; T39 = W[74]; T3c = W[75]; T8S = FNMS(T3p, T3n, T8R); T3r = FMA(T3p, T3q, T3o); T8K = T39 * T3d; T3b = T39 * T3a; T3h = ri[WS(rs, 54)]; T3k = ii[WS(rs, 54)]; T8L = FNMS(T3c, T3a, T8K); T3e = FMA(T3c, T3d, T3b); T3g = W[106]; T3j = W[107]; } } T8M = T8J - T8L; Tfk = T8J + T8L; T3f = T38 + T3e; T8H = T38 - T3e; T8P = T3g * T3k; T3i = T3g * T3h; T8Q = FNMS(T3j, T3h, T8P); T3l = FMA(T3j, T3k, T3i); } } { E T9u, T9p, Tac, T9o; { E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d; { E T4i, T4l, T4k, T9s, T4j; { E T3Z, T42, T3Y, T41, T9j, T40, T4h; { E T95, T8N, T8T, Tfl, T8O, T3s, T8U, T94; T3Z = ri[WS(rs, 9)]; T95 = T8M - T8H; T8N = T8H + T8M; T8T = T8Q - T8S; Tfl = T8Q + T8S; T8O = T3l - T3r; T3s = T3l + T3r; T42 = ii[WS(rs, 9)]; Tfm = Tfk - Tfl; ThC = Tfk + Tfl; T8U = T8O - T8T; T94 = T8O + T8T; T3t = T3f + T3s; Tfh = T3s - T3f; T96 = T94 - T95; TcV = T95 + T94; T8V = T8N - T8U; TcY = T8N + T8U; T3Y = W[16]; } T41 = W[17]; T4i = ri[WS(rs, 25)]; T4l = ii[WS(rs, 25)]; T9j = T3Y * T42; T40 = T3Y * T3Z; T4h = W[48]; T4k = W[49]; T9k = FNMS(T41, T3Z, T9j); T43 = FMA(T41, T42, T40); T9s = T4h * T4l; T4j = T4h * T4i; } { E T45, T48, T44, T47, T9l, T46, T4b; T45 = ri[WS(rs, 41)]; T48 = ii[WS(rs, 41)]; T9t = FNMS(T4k, T4i, T9s); T4m = FMA(T4k, T4l, T4j); T44 = W[80]; T47 = W[81]; T4c = ri[WS(rs, 57)]; T4f = ii[WS(rs, 57)]; T9l = T44 * T48; T46 = T44 * T45; T4b = W[112]; T4e = W[113]; T9m = FNMS(T47, T45, T9l); T49 = FMA(T47, T48, T46); T9q = T4b * T4f; T4d = T4b * T4c; } } { E T9n, TfJ, T4a, T9i, T9r, T4g, TfK, T4n; T9n = T9k - T9m; TfJ = T9k + T9m; T4a = T43 + T49; T9i = T43 - T49; T9r = FNMS(T4e, T4c, T9q); T4g = FMA(T4e, T4f, T4d); T9u = T9r - T9t; TfK = T9r + T9t; T4n = T4g + T4m; T9p = T4g - T4m; Tac = T9n - T9i; T9o = T9i + T9n; ThI = TfJ + TfK; TfL = TfJ - TfK; Tfu = T4n - T4a; T4o = T4a + T4n; } } { E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60; { E T65, T68, T64, T67; { E T5M, T5P, T5L, Tab, T9v, T5O, Tas, T5N; T5M = ri[WS(rs, 7)]; T5P = ii[WS(rs, 7)]; T5L = W[12]; Tab = T9p + T9u; T9v = T9p - T9u; T5O = W[13]; Tas = T5L * T5P; T5N = T5L * T5M; Tad = Tab - Tac; Td4 = Tac + Tab; T9w = T9o - T9v; Tdf = T9o + T9v; T5Q = FMA(T5O, T5P, T5N); Tat = FNMS(T5O, T5M, Tas); } T65 = ri[WS(rs, 23)]; T68 = ii[WS(rs, 23)]; T64 = W[44]; T67 = W[45]; { E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R; T5S = ri[WS(rs, 39)]; T5V = ii[WS(rs, 39)]; TaB = T64 * T68; T66 = T64 * T65; T5R = W[76]; T5U = W[77]; TaC = FNMS(T67, T65, TaB); T69 = FMA(T67, T68, T66); Tau = T5R * T5V; T5T = T5R * T5S; T5Z = ri[WS(rs, 55)]; T62 = ii[WS(rs, 55)]; Tav = FNMS(T5U, T5S, Tau); T5W = FMA(T5U, T5V, T5T); T5Y = W[108]; T61 = W[109]; } } Taw = Tat - Tav; Tga = Tat + Tav; T5X = T5Q + T5W; Tar = T5Q - T5W; Taz = T5Y * T62; T60 = T5Y * T5Z; TaA = FNMS(T61, T5Z, Taz); T63 = FMA(T61, T62, T60); } } } { E T9E, Tda, TfE, TfB, Td9, T9L; { E T9T, Td7, Tfy, Tfz, Td6, Ta0; { E T9V, T4v, T9R, T4O, T4E, T4H, T4G, T9X, T4B, T9O, T4F; { E T4K, T4N, T4M, T9Q, T4L; { E T4r, T4u, T4q, T4t, T9U, T4s, T4J; { E Tbl, Tax, TaD, Tgb, Tay, T6a, TaE, Tbk; T4r = ri[WS(rs, 5)]; Tbl = Taw - Tar; Tax = Tar + Taw; TaD = TaA - TaC; Tgb = TaA + TaC; Tay = T63 - T69; T6a = T63 + T69; T4u = ii[WS(rs, 5)]; Tgc = Tga - Tgb; ThT = Tga + Tgb; TaE = Tay - TaD; Tbk = Tay + TaD; T6b = T5X + T6a; TfV = T6a - T5X; Tbm = Tbk - Tbl; Tdn = Tbl + Tbk; TaF = Tax - TaE; Tdy = Tax + TaE; T4q = W[8]; } T4t = W[9]; T4K = ri[WS(rs, 53)]; T4N = ii[WS(rs, 53)]; T9U = T4q * T4u; T4s = T4q * T4r; T4J = W[104]; T4M = W[105]; T9V = FNMS(T4t, T4r, T9U); T4v = FMA(T4t, T4u, T4s); T9Q = T4J * T4N; T4L = T4J * T4K; } { E T4x, T4A, T4w, T4z, T9W, T4y, T4D; T4x = ri[WS(rs, 37)]; T4A = ii[WS(rs, 37)]; T9R = FNMS(T4M, T4K, T9Q); T4O = FMA(T4M, T4N, T4L); T4w = W[72]; T4z = W[73]; T4E = ri[WS(rs, 21)]; T4H = ii[WS(rs, 21)];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -