📄 t1_64.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:51 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h *//* * This function contains 1038 FP additions, 644 FP multiplications, * (or, 520 additions, 126 multiplications, 518 fused multiply/add), * 228 stack variables, 15 constants, and 256 memory accesses */#include "t.h"static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP820678790, +0.820678790828660330972281985331011598767386482); DK(KP098491403, +0.098491403357164253077197521291327432293052451); DK(KP534511135, +0.534511135950791641089685961295362908582039528); DK(KP303346683, +0.303346683607342391675883946941299872384187453); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); INT m; for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(rs)) { E TeI, Tkk, Tkj, TeL; { E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, TeZ, Ths, T7Q, TcJ, T1G, TeW, TcI; E T7X, Tf5, Thv, T87, TcN, T29, Tf8, TcQ, T8u, TfU, ThS, Taq, Tdm, T5K, Tg9; E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7I, TcF, TeU, Thr, T7B; E TcG, T1f, TeR, Tfg, ThB, T8G, TcU, T32, Tfj, TcX, T93, Tft, ThH, T9h, Td3; E T3X, TfI, Tde, Taa, Thw, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t; E Tfh, T96, TcV, T8V, TcY, ThI, TfL, Tfu, T4o, Tad, Td4, T9w, Tdf, Tgc, ThT; E T6b, TfV, Tbm, Tdn, TaF, Tdy, ThN, T4Q, TfN, TfA, Taf, Ta1, Td8, Tdh, ThO; E T5h, TfO, TfF, Tag, T9M, Tdb, Tdi, ThY, T6D, Tge, Tg1, Tbo, Tba, Tdr, TdA; E TaN, Tdt, Tg5, ThZ, Tg2, T74, Tds, TaU; { E T7a, Te, T78, T8, TjP, TiU, T7c, Tk; { E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th; T1 = ri[0]; TiT = ii[0]; { E T3, T6, T2, T5; T3 = ri[WS(rs, 32)]; T6 = ii[WS(rs, 32)]; T2 = W[62]; T5 = W[63]; { E Ta, Td, Tc, T79, Tb, TiR, T4, T9; Ta = ri[WS(rs, 16)]; Td = ii[WS(rs, 16)]; TiR = T2 * T6; T4 = T2 * T3; T9 = W[30]; Tc = W[31]; TiS = FNMS(T5, T3, TiR); T7 = FMA(T5, T6, T4); T79 = T9 * Td; Tb = T9 * Ta; Tg = ri[WS(rs, 48)]; Tj = ii[WS(rs, 48)]; T7a = FNMS(Tc, Ta, T79); Te = FMA(Tc, Td, Tb); Tf = W[94]; Ti = W[95]; } } T78 = T1 - T7; T8 = T1 + T7; TjP = TiT - TiS; TiU = TiS + TiT; T7b = Tf * Tj; Th = Tf * Tg; T7c = FNMS(Ti, Tg, T7b); Tk = FMA(Ti, Tj, Th); } { E T7L, T1l, T7V, T1E, T1u, T1x, T1w, T7N, T1r, T7S, T1v; { E T1A, T1D, T1C, T7U, T1B; { E T1h, T1k, T1g, T1j, T7K, T1i, T1z; T1h = ri[WS(rs, 60)]; T1k = ii[WS(rs, 60)]; { E T7d, TiQ, Tl, TjQ; T7d = T7a - T7c; TiQ = T7a + T7c; Tl = Te + Tk; TjQ = Te - Tk; TiV = TiQ + TiU; Tjm = TiU - TiQ; T7e = T78 - T7d; TcA = T78 + T7d; TjR = TjP - TjQ; Tkl = TjQ + TjP; Tm = T8 + Tl; TeM = T8 - Tl; T1g = W[118]; } T1j = W[119]; T1A = ri[WS(rs, 44)]; T1D = ii[WS(rs, 44)]; T7K = T1g * T1k; T1i = T1g * T1h; T1z = W[86]; T1C = W[87]; T7L = FNMS(T1j, T1h, T7K); T1l = FMA(T1j, T1k, T1i); T7U = T1z * T1D; T1B = T1z * T1A; } { E T1n, T1q, T1m, T1p, T7M, T1o, T1t; T1n = ri[WS(rs, 28)]; T1q = ii[WS(rs, 28)]; T7V = FNMS(T1C, T1A, T7U); T1E = FMA(T1C, T1D, T1B); T1m = W[54]; T1p = W[55]; T1u = ri[WS(rs, 12)]; T1x = ii[WS(rs, 12)]; T7M = T1m * T1q; T1o = T1m * T1n; T1t = W[22]; T1w = W[23]; T7N = FNMS(T1p, T1n, T7M); T1r = FMA(T1p, T1q, T1o); T7S = T1t * T1x; T1v = T1t * T1u; } } { E T7O, TeX, T1s, T7R, T7T, T1y; T7O = T7L - T7N; TeX = T7L + T7N; T1s = T1l + T1r; T7R = T1l - T1r; T7T = FNMS(T1w, T1u, T7S); T1y = FMA(T1w, T1x, T1v); { E T7W, TeY, T7P, T1F; T7W = T7T - T7V; TeY = T7T + T7V; T7P = T1y - T1E; T1F = T1y + T1E; TeZ = TeX - TeY; Ths = TeX + TeY; T7Q = T7O + T7P; TcJ = T7O - T7P; T1G = T1s + T1F; TeW = T1s - T1F; TcI = T7R + T7W; T7X = T7R - T7W; } } } } { E T82, T1O, T8s, T27, T1X, T20, T1Z, T84, T1U, T8p, T1Y; { E T23, T26, T25, T8r, T24; { E T1K, T1N, T1J, T1M, T81, T1L, T22; T1K = ri[WS(rs, 2)]; T1N = ii[WS(rs, 2)]; T1J = W[2]; T1M = W[3]; T23 = ri[WS(rs, 50)]; T26 = ii[WS(rs, 50)]; T81 = T1J * T1N; T1L = T1J * T1K; T22 = W[98]; T25 = W[99]; T82 = FNMS(T1M, T1K, T81); T1O = FMA(T1M, T1N, T1L); T8r = T22 * T26; T24 = T22 * T23; } { E T1Q, T1T, T1P, T1S, T83, T1R, T1W; T1Q = ri[WS(rs, 34)]; T1T = ii[WS(rs, 34)]; T8s = FNMS(T25, T23, T8r); T27 = FMA(T25, T26, T24); T1P = W[66]; T1S = W[67]; T1X = ri[WS(rs, 18)]; T20 = ii[WS(rs, 18)]; T83 = T1P * T1T; T1R = T1P * T1Q; T1W = W[34]; T1Z = W[35]; T84 = FNMS(T1S, T1Q, T83); T1U = FMA(T1S, T1T, T1R); T8p = T1W * T20; T1Y = T1W * T1X; } } { E T85, Tf3, T1V, T8o, T8q, T21; T85 = T82 - T84; Tf3 = T82 + T84; T1V = T1O + T1U; T8o = T1O - T1U; T8q = FNMS(T1Z, T1X, T8p); T21 = FMA(T1Z, T20, T1Y); { E T8t, Tf4, T86, T28; T8t = T8q - T8s; Tf4 = T8q + T8s; T86 = T21 - T27; T28 = T21 + T27; Tf5 = Tf3 - Tf4; Thv = Tf3 + Tf4; T87 = T85 + T86; TcN = T85 - T86; T29 = T1V + T28; Tf8 = T1V - T28; TcQ = T8o + T8t; T8u = T8o - T8t; } } } { E Tal, T5p, Tbh, T5I, T5y, T5B, T5A, Tan, T5v, Tbe, T5z; { E T5E, T5H, T5G, Tbg, T5F; { E T5l, T5o, T5k, T5n, Tak, T5m, T5D; T5l = ri[WS(rs, 63)]; T5o = ii[WS(rs, 63)]; T5k = W[124]; T5n = W[125]; T5E = ri[WS(rs, 47)]; T5H = ii[WS(rs, 47)]; Tak = T5k * T5o; T5m = T5k * T5l; T5D = W[92]; T5G = W[93]; Tal = FNMS(T5n, T5l, Tak); T5p = FMA(T5n, T5o, T5m); Tbg = T5D * T5H; T5F = T5D * T5E; } { E T5r, T5u, T5q, T5t, Tam, T5s, T5x; T5r = ri[WS(rs, 31)]; T5u = ii[WS(rs, 31)]; Tbh = FNMS(T5G, T5E, Tbg); T5I = FMA(T5G, T5H, T5F); T5q = W[60]; T5t = W[61]; T5y = ri[WS(rs, 15)]; T5B = ii[WS(rs, 15)]; Tam = T5q * T5u; T5s = T5q * T5r; T5x = W[28]; T5A = W[29]; Tan = FNMS(T5t, T5r, Tam); T5v = FMA(T5t, T5u, T5s); Tbe = T5x * T5B; T5z = T5x * T5y; } } { E Tao, TfS, T5w, Tbd, Tbf, T5C; Tao = Tal - Tan; TfS = Tal + Tan; T5w = T5p + T5v; Tbd = T5p - T5v; Tbf = FNMS(T5A, T5y, Tbe); T5C = FMA(T5A, T5B, T5z); { E Tbi, TfT, Tap, T5J; Tbi = Tbf - Tbh; TfT = Tbf + Tbh; Tap = T5C - T5I; T5J = T5C + T5I; TfU = TfS - TfT; ThS = TfS + TfT; Taq = Tao + Tap; Tdm = Tao - Tap; T5K = T5w + T5J; Tg9 = T5w - T5J; Tdx = Tbd + Tbi; Tbj = Tbd - Tbi; } } } { E T7G, T1d, T7z, TeS, T11, T7C, T7E, T17, T7r, T7m; { E T7g, Ts, T7q, TL, TB, TE, TD, T7i, Ty, T7n, TC; { E TH, TK, TJ, T7p, TI; { E To, Tr, Tn, Tq, T7f, Tp, TG; To = ri[WS(rs, 8)]; Tr = ii[WS(rs, 8)]; Tn = W[14]; Tq = W[15]; TH = ri[WS(rs, 24)]; TK = ii[WS(rs, 24)]; T7f = Tn * Tr; Tp = Tn * To; TG = W[46]; TJ = W[47]; T7g = FNMS(Tq, To, T7f); Ts = FMA(Tq, Tr, Tp); T7p = TG * TK; TI = TG * TH; } { E Tu, Tx, Tt, Tw, T7h, Tv, TA; Tu = ri[WS(rs, 40)]; Tx = ii[WS(rs, 40)]; T7q = FNMS(TJ, TH, T7p); TL = FMA(TJ, TK, TI); Tt = W[78]; Tw = W[79]; TB = ri[WS(rs, 56)]; TE = ii[WS(rs, 56)]; T7h = Tt * Tx; Tv = Tt * Tu; TA = W[110]; TD = W[111]; T7i = FNMS(Tw, Tu, T7h); Ty = FMA(Tw, Tx, Tv); T7n = TA * TE; TC = TA * TB; } } { E T7j, TeN, Tz, T7k, T7o, TF, TeO, TM; T7j = T7g - T7i; TeN = T7g + T7i; Tz = Ts + Ty; T7k = Ts - Ty; T7o = FNMS(TD, TB, T7n); TF = FMA(TD, TE, TC); T7r = T7o - T7q; TeO = T7o + T7q; TM = TF + TL; T7m = TF - TL; TcB = T7k + T7j; T7l = T7j - T7k; TiP = TeN + TeO; TeP = TeN - TeO; Tjl = TM - Tz; TN = Tz + TM; } } { E T7w, TU, T13, T16, T7y, T10, T12, T15, T7D, T14; { E T19, T1c, T18, T1b; { E TQ, TT, TS, T7v, TR, TP; TQ = ri[WS(rs, 4)]; TT = ii[WS(rs, 4)]; TP = W[6]; TcC = T7m - T7r; T7s = T7m + T7r; TS = W[7]; T7v = TP * TT; TR = TP * TQ; T19 = ri[WS(rs, 52)]; T1c = ii[WS(rs, 52)]; T7w = FNMS(TS, TQ, T7v); TU = FMA(TS, TT, TR); T18 = W[102]; T1b = W[103]; } { E TW, TZ, TY, T7x, TX, T7F, T1a, TV; TW = ri[WS(rs, 36)]; TZ = ii[WS(rs, 36)]; T7F = T18 * T1c; T1a = T18 * T19; TV = W[70]; TY = W[71]; T7G = FNMS(T1b, T19, T7F); T1d = FMA(T1b, T1c, T1a); T7x = TV * TZ; TX = TV * TW; T13 = ri[WS(rs, 20)]; T16 = ii[WS(rs, 20)]; T7y = FNMS(TY, TW, T7x); T10 = FMA(TY, TZ, TX); T12 = W[38]; T15 = W[39]; } } T7z = T7w - T7y; TeS = T7w + T7y; T11 = TU + T10; T7C = TU - T10; T7D = T12 * T16; T14 = T12 * T13; T7E = FNMS(T15, T13, T7D); T17 = FMA(T15, T16, T14); } { E T8B, T2H, T91, T30, T2Q, T2T, T2S, T8D, T2N, T8Y, T2R; { E T2W, T2Z, T2Y, T90, T2X; { E T2D, T2G, T2C, T2F, T8A, T2E, T2V; T2D = ri[WS(rs, 62)]; T2G = ii[WS(rs, 62)]; { E TeT, T7H, T1e, T7A; TeT = T7E + T7G; T7H = T7E - T7G; T1e = T17 + T1d; T7A = T17 - T1d;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -