⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_10.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:39:44 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include t.h *//* * This function contains 114 FP additions, 94 FP multiplications, * (or, 48 additions, 28 multiplications, 66 fused multiply/add), * 85 stack variables, 4 constants, and 40 memory accesses */#include "t.h"static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(rs)) {	  E T27, T2b, T2a, T2c;	  {	       E T2, T3, T8, Tc, T5, T4, TX, T11, TE, T6, TB, TA;	       T2 = W[0];	       T3 = W[2];	       T8 = W[4];	       Tc = W[5];	       T5 = W[1];	       T4 = T2 * T3;	       TX = T3 * T8;	       TA = T2 * T8;	       T11 = T3 * Tc;	       TE = T2 * Tc;	       T6 = W[3];	       TB = FMA(T5, Tc, TA);	       {		    E T2d, T24, T1c, Tk, T1i, T28, T2l, T1a, T2f, T1I, T1R, T1Z, TL, T1v, T1d;		    E Tz, T1S, T1r, TH, T1t;		    {			 E T1, TF, TY, T12, Tl, T7, T23, To, Tb, Te, Ti, Th, Td, Tw, Ts;			 E Ta;			 T1 = ri[0];			 TF = FNMS(T5, T8, TE);			 TY = FMA(T6, Tc, TX);			 T12 = FNMS(T6, T8, T11);			 Tl = FMA(T5, T6, T4);			 T7 = FNMS(T5, T6, T4);			 Ta = T2 * T6;			 T23 = ii[0];			 {			      E Tg, T9, Tv, Tr;			      Tg = T7 * Tc;			      T9 = T7 * T8;			      Tv = Tl * Tc;			      Tr = Tl * T8;			      To = FNMS(T5, T3, Ta);			      Tb = FMA(T5, T3, Ta);			      Te = ri[WS(rs, 5)];			      Ti = ii[WS(rs, 5)];			      Th = FNMS(Tb, T8, Tg);			      Td = FMA(Tb, Tc, T9);			      Tw = FNMS(To, T8, Tv);			      Ts = FMA(To, Tc, Tr);			 }			 {			      E T18, T1G, T1g, TW, T1P, T1C, T14, T1E;			      {				   E TR, T1z, TV, T1B, TZ, T13, T15, T17, T10, T1D;				   {					E TO, TQ, TP, T22, Tj, T1y, T21, Tf;					TO = ri[WS(rs, 4)];					T21 = Td * Ti;					Tf = Td * Te;					TQ = ii[WS(rs, 4)];					TP = T7 * TO;					T22 = FNMS(Th, Te, T21);					Tj = FMA(Th, Ti, Tf);					T1y = T7 * TQ;					TR = FMA(Tb, TQ, TP);					T2d = T23 - T22;					T24 = T22 + T23;					T1c = T1 + Tj;					Tk = T1 - Tj;					T1z = FNMS(Tb, TO, T1y);				   }				   T15 = ri[WS(rs, 1)];				   T17 = ii[WS(rs, 1)];				   {					E TS, TU, T16, T1F, TT, T1A;					TS = ri[WS(rs, 9)];					TU = ii[WS(rs, 9)];					T16 = T2 * T15;					T1F = T2 * T17;					TT = T8 * TS;					T1A = T8 * TU;					T18 = FMA(T5, T17, T16);					T1G = FNMS(T5, T15, T1F);					TV = FMA(Tc, TU, TT);					T1B = FNMS(Tc, TS, T1A);				   }				   TZ = ri[WS(rs, 6)];				   T13 = ii[WS(rs, 6)];				   T1g = TR + TV;				   TW = TR - TV;				   T1P = T1z + T1B;				   T1C = T1z - T1B;				   T10 = TY * TZ;				   T1D = TY * T13;				   T14 = FMA(T12, T13, T10);				   T1E = FNMS(T12, TZ, T1D);			      }			      {				   E Tq, T1o, Ty, TC, TG, T1q, TD, T1s;				   {					E TI, TK, Tt, T1p;					{					     E Tm, T1n, Tp, Tn;					     Tm = ri[WS(rs, 2)];					     Tp = ii[WS(rs, 2)];					     {						  E T19, T1h, T1Q, T1H;						  T19 = T14 - T18;						  T1h = T14 + T18;						  T1Q = T1E + T1G;						  T1H = T1E - T1G;						  Tn = Tl * Tm;						  T1i = T1g + T1h;						  T28 = T1g - T1h;						  T2l = TW - T19;						  T1a = TW + T19;						  T2f = T1C + T1H;						  T1I = T1C - T1H;						  T1R = T1P - T1Q;						  T1Z = T1P + T1Q;						  T1n = Tl * Tp;					     }					     Tq = FMA(To, Tp, Tn);					     TI = ri[WS(rs, 3)];					     TK = ii[WS(rs, 3)];					     T1o = FNMS(To, Tm, T1n);					}					{					     E Tx, Tu, TJ, T1u;					     Tt = ri[WS(rs, 7)];					     TJ = T3 * TI;					     T1u = T3 * TK;					     Tx = ii[WS(rs, 7)];					     Tu = Ts * Tt;					     TL = FMA(T6, TK, TJ);					     T1v = FNMS(T6, TI, T1u);					     T1p = Ts * Tx;					     Ty = FMA(Tw, Tx, Tu);					}					TC = ri[WS(rs, 8)];					TG = ii[WS(rs, 8)];					T1q = FNMS(Tw, Tt, T1p);				   }				   T1d = Tq + Ty;				   Tz = Tq - Ty;				   TD = TB * TC;				   T1s = TB * TG;				   T1S = T1o + T1q;				   T1r = T1o - T1q;				   TH = FMA(TF, TG, TD);				   T1t = FNMS(TF, TC, T1s);			      }			 }		    }		    {			 E T1f, T29, T1Y, T1U, T2j, T2n, T2m, T2o;			 {			      E T2k, T2e, T1l, T1L, T1J, T1k, T1b, T1e, TM;			      T1e = TH + TL;			      TM = TH - TL;			      {				   E T1w, T1T, TN, T1x;				   T1w = T1t - T1v;				   T1T = T1t + T1v;				   T1f = T1d + T1e;				   T29 = T1d - T1e;				   T2k = Tz - TM;				   TN = Tz + TM;				   T1x = T1r - T1w;				   T2e = T1r + T1w;				   T1Y = T1S + T1T;				   T1U = T1S - T1T;				   T1l = TN - T1a;				   T1b = TN + T1a;				   T1L = FNMS(KP618033988, T1x, T1I);				   T1J = FMA(KP618033988, T1I, T1x);			      }			      T1k = FNMS(KP250000000, T1b, Tk);			      ri[WS(rs, 5)] = Tk + T1b;			      {				   E T2g, T2i, T2h, T1K, T1m;				   T2g = T2e + T2f;				   T2i = T2e - T2f;				   T1K = FNMS(KP559016994, T1l, T1k);				   T1m = FMA(KP559016994, T1l, T1k);				   T2h = FNMS(KP250000000, T2g, T2d);				   ri[WS(rs, 1)] = FMA(KP951056516, T1J, T1m);				   ri[WS(rs, 9)] = FNMS(KP951056516, T1J, T1m);				   ri[WS(rs, 3)] = FMA(KP951056516, T1L, T1K);				   ri[WS(rs, 7)] = FNMS(KP951056516, T1L, T1K);				   ii[WS(rs, 5)] = T2g + T2d;				   T2j = FMA(KP559016994, T2i, T2h);				   T2n = FNMS(KP559016994, T2i, T2h);				   T2m = FMA(KP618033988, T2l, T2k);				   T2o = FNMS(KP618033988, T2k, T2l);			      }			 }			 {			      E T1O, T1W, T1V, T1X, T1j, T1N, T1M, T20, T26, T25;			      T1j = T1f + T1i;			      T1N = T1f - T1i;			      ii[WS(rs, 7)] = FMA(KP951056516, T2o, T2n);			      ii[WS(rs, 3)] = FNMS(KP951056516, T2o, T2n);			      ii[WS(rs, 9)] = FMA(KP951056516, T2m, T2j);			      ii[WS(rs, 1)] = FNMS(KP951056516, T2m, T2j);			      T1M = FNMS(KP250000000, T1j, T1c);			      ri[0] = T1c + T1j;			      T1O = FNMS(KP559016994, T1N, T1M);			      T1W = FMA(KP559016994, T1N, T1M);			      T1V = FNMS(KP618033988, T1U, T1R);			      T1X = FMA(KP618033988, T1R, T1U);			      T20 = T1Y + T1Z;			      T26 = T1Y - T1Z;			      ri[WS(rs, 6)] = FMA(KP951056516, T1X, T1W);			      ri[WS(rs, 4)] = FNMS(KP951056516, T1X, T1W);			      ri[WS(rs, 8)] = FMA(KP951056516, T1V, T1O);			      ri[WS(rs, 2)] = FNMS(KP951056516, T1V, T1O);			      T25 = FNMS(KP250000000, T20, T24);			      ii[0] = T20 + T24;			      T27 = FNMS(KP559016994, T26, T25);			      T2b = FMA(KP559016994, T26, T25);			      T2a = FNMS(KP618033988, T29, T28);			      T2c = FMA(KP618033988, T28, T29);			 }		    }	       }	  }	  ii[WS(rs, 6)] = FNMS(KP951056516, T2c, T2b);	  ii[WS(rs, 4)] = FMA(KP951056516, T2c, T2b);	  ii[WS(rs, 8)] = FNMS(KP951056516, T2a, T27);	  ii[WS(rs, 2)] = FMA(KP951056516, T2a, T27);     }}static const tw_instr twinstr[] = {     {TW_CEXP, 0, 1},     {TW_CEXP, 0, 3},     {TW_CEXP, 0, 9},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {48, 28, 66, 0}, 0, 0, 0 };void X(codelet_t2_10) (planner *p) {     X(kdft_dit_register) (p, t2_10, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include t.h *//* * This function contains 114 FP additions, 80 FP multiplications, * (or, 76 additions, 42 multiplications, 38 fused multiply/add), * 63 stack variables, 4 constants, and 40 memory accesses */#include "t.h"static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     INT m;     for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(rs)) {	  E T2, T5, T3, T6, T8, Tm, Tc, Tk, T9, Td, Te, TM, TO, Tg, Tp;	  E Tv, Tx, Tr;	  {	       E T4, Tb, T7, Ta;	       T2 = W[0];	       T5 = W[1];	       T3 = W[2];	       T6 = W[3];	       T4 = T2 * T3;	       Tb = T5 * T3;	       T7 = T5 * T6;	       Ta = T2 * T6;	       T8 = T4 - T7;	       Tm = Ta - Tb;	       Tc = Ta + Tb;	       Tk = T4 + T7;	       T9 = W[4];	       Td = W[5];	       Te = FMA(T8, T9, Tc * Td);	       TM = FMA(T3, T9, T6 * Td);	       TO = FNMS(T6, T9, T3 * Td);	       Tg = FNMS(Tc, T9, T8 * Td);	       Tp = FMA(Tk, T9, Tm * Td);	       Tv = FMA(T2, T9, T5 * Td);	       Tx = FNMS(T5, T9, T2 * Td);	       Tr = FNMS(Tm, T9, Tk * Td);	  }	  {	       E Tj, T1S, TX, T1G, TL, TU, TV, T1s, T1t, T1C, T11, T12, T13, T1h, T1k;	       E T1Q, Tu, TD, TE, T1v, T1w, T1B, TY, TZ, T10, T1a, T1d, T1P;	       {		    E T1, T1F, Ti, T1E, Tf, Th;		    T1 = ri[0];		    T1F = ii[0];		    Tf = ri[WS(rs, 5)];		    Th = ii[WS(rs, 5)];		    Ti = FMA(Te, Tf, Tg * Th);		    T1E = FNMS(Tg, Tf, Te * Th);		    Tj = T1 - Ti;		    T1S = T1F - T1E;		    TX = T1 + Ti;		    T1G = T1E + T1F;	       }	       {		    E TH, T1f, TT, T1j, TK, T1g, TQ, T1i;		    {			 E TF, TG, TR, TS;			 TF = ri[WS(rs, 4)];			 TG = ii[WS(rs, 4)];			 TH = FMA(T8, TF, Tc * TG);			 T1f = FNMS(Tc, TF, T8 * TG);			 TR = ri[WS(rs, 1)];			 TS = ii[WS(rs, 1)];			 TT = FMA(T2, TR, T5 * TS);			 T1j = FNMS(T5, TR, T2 * TS);		    }		    {			 E TI, TJ, TN, TP;			 TI = ri[WS(rs, 9)];			 TJ = ii[WS(rs, 9)];			 TK = FMA(T9, TI, Td * TJ);			 T1g = FNMS(Td, TI, T9 * TJ);			 TN = ri[WS(rs, 6)];			 TP = ii[WS(rs, 6)];			 TQ = FMA(TM, TN, TO * TP);			 T1i = FNMS(TO, TN, TM * TP);		    }		    TL = TH - TK;		    TU = TQ - TT;		    TV = TL + TU;		    T1s = T1f + T1g;		    T1t = T1i + T1j;		    T1C = T1s + T1t;		    T11 = TH + TK;		    T12 = TQ + TT;		    T13 = T11 + T12;		    T1h = T1f - T1g;		    T1k = T1i - T1j;		    T1Q = T1h + T1k;	       }	       {		    E To, T18, TC, T1c, Tt, T19, Tz, T1b;		    {			 E Tl, Tn, TA, TB;			 Tl = ri[WS(rs, 2)];			 Tn = ii[WS(rs, 2)];			 To = FMA(Tk, Tl, Tm * Tn);			 T18 = FNMS(Tm, Tl, Tk * Tn);			 TA = ri[WS(rs, 3)];			 TB = ii[WS(rs, 3)];			 TC = FMA(T3, TA, T6 * TB);			 T1c = FNMS(T6, TA, T3 * TB);		    }		    {			 E Tq, Ts, Tw, Ty;			 Tq = ri[WS(rs, 7)];			 Ts = ii[WS(rs, 7)];			 Tt = FMA(Tp, Tq, Tr * Ts);			 T19 = FNMS(Tr, Tq, Tp * Ts);			 Tw = ri[WS(rs, 8)];			 Ty = ii[WS(rs, 8)];			 Tz = FMA(Tv, Tw, Tx * Ty);			 T1b = FNMS(Tx, Tw, Tv * Ty);		    }		    Tu = To - Tt;		    TD = Tz - TC;		    TE = Tu + TD;		    T1v = T18 + T19;		    T1w = T1b + T1c;		    T1B = T1v + T1w;		    TY = To + Tt;		    TZ = Tz + TC;		    T10 = TY + TZ;		    T1a = T18 - T19;		    T1d = T1b - T1c;		    T1P = T1a + T1d;	       }	       {		    E T15, TW, T16, T1m, T1o, T1e, T1l, T1n, T17;		    T15 = KP559016994 * (TE - TV);		    TW = TE + TV;		    T16 = FNMS(KP250000000, TW, Tj);		    T1e = T1a - T1d;		    T1l = T1h - T1k;		    T1m = FMA(KP951056516, T1e, KP587785252 * T1l);		    T1o = FNMS(KP587785252, T1e, KP951056516 * T1l);		    ri[WS(rs, 5)] = Tj + TW;		    T1n = T16 - T15;		    ri[WS(rs, 7)] = T1n - T1o;		    ri[WS(rs, 3)] = T1n + T1o;		    T17 = T15 + T16;		    ri[WS(rs, 9)] = T17 - T1m;		    ri[WS(rs, 1)] = T17 + T1m;	       }	       {		    E T1R, T1T, T1U, T1Y, T20, T1W, T1X, T1Z, T1V;		    T1R = KP559016994 * (T1P - T1Q);		    T1T = T1P + T1Q;		    T1U = FNMS(KP250000000, T1T, T1S);		    T1W = Tu - TD;		    T1X = TL - TU;		    T1Y = FMA(KP951056516, T1W, KP587785252 * T1X);		    T20 = FNMS(KP587785252, T1W, KP951056516 * T1X);		    ii[WS(rs, 5)] = T1T + T1S;		    T1Z = T1U - T1R;		    ii[WS(rs, 3)] = T1Z - T20;		    ii[WS(rs, 7)] = T20 + T1Z;		    T1V = T1R + T1U;		    ii[WS(rs, 1)] = T1V - T1Y;		    ii[WS(rs, 9)] = T1Y + T1V;	       }	       {		    E T1q, T14, T1p, T1y, T1A, T1u, T1x, T1z, T1r;		    T1q = KP559016994 * (T10 - T13);		    T14 = T10 + T13;		    T1p = FNMS(KP250000000, T14, TX);		    T1u = T1s - T1t;		    T1x = T1v - T1w;		    T1y = FNMS(KP587785252, T1x, KP951056516 * T1u);		    T1A = FMA(KP951056516, T1x, KP587785252 * T1u);		    ri[0] = TX + T14;		    T1z = T1q + T1p;		    ri[WS(rs, 4)] = T1z - T1A;		    ri[WS(rs, 6)] = T1z + T1A;		    T1r = T1p - T1q;		    ri[WS(rs, 2)] = T1r - T1y;		    ri[WS(rs, 8)] = T1r + T1y;	       }	       {		    E T1L, T1D, T1K, T1J, T1N, T1H, T1I, T1O, T1M;		    T1L = KP559016994 * (T1B - T1C);		    T1D = T1B + T1C;		    T1K = FNMS(KP250000000, T1D, T1G);		    T1H = T11 - T12;		    T1I = TY - TZ;		    T1J = FNMS(KP587785252, T1I, KP951056516 * T1H);		    T1N = FMA(KP951056516, T1I, KP587785252 * T1H);		    ii[0] = T1D + T1G;		    T1O = T1L + T1K;		    ii[WS(rs, 4)] = T1N + T1O;		    ii[WS(rs, 6)] = T1O - T1N;		    T1M = T1K - T1L;		    ii[WS(rs, 2)] = T1J + T1M;		    ii[WS(rs, 8)] = T1M - T1J;	       }	  }     }}static const tw_instr twinstr[] = {     {TW_CEXP, 0, 1},     {TW_CEXP, 0, 3},     {TW_CEXP, 0, 9},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {76, 42, 38, 0}, 0, 0, 0 };void X(codelet_t2_10) (planner *p) {     X(kdft_dit_register) (p, t2_10, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -