⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_20.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
			      ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M);			      ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M);			      T4U = T4Q - T4R;			      T4S = T4Q + T4R;			 }		    }	       }	  }	  ii[WS(rs, 5)] = T4S + T4P;	  T4T = FNMS(KP250000000, T4S, T4P);	  T4Z = FNMS(KP559016994, T4U, T4T);	  T4V = FMA(KP559016994, T4U, T4T);	  ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V);	  ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V);	  ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z);	  ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z);     }}static const tw_instr twinstr[] = {     {TW_FULL, 0, 20},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 };void X(codelet_t1_20) (planner *p) {     X(kdft_dit_register) (p, t1_20, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h *//* * This function contains 246 FP additions, 124 FP multiplications, * (or, 184 additions, 62 multiplications, 62 fused multiply/add), * 85 stack variables, 4 constants, and 80 memory accesses */#include "t.h"static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     INT m;     for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {	  E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D;	  E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G;	  E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e;	  E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B;	  {	       E T1, T3O, T6, T3N, Tc, T2n, Th, T2o;	       T1 = ri[0];	       T3O = ii[0];	       {		    E T3, T5, T2, T4;		    T3 = ri[WS(rs, 10)];		    T5 = ii[WS(rs, 10)];		    T2 = W[18];		    T4 = W[19];		    T6 = FMA(T2, T3, T4 * T5);		    T3N = FNMS(T4, T3, T2 * T5);	       }	       {		    E T9, Tb, T8, Ta;		    T9 = ri[WS(rs, 5)];		    Tb = ii[WS(rs, 5)];		    T8 = W[8];		    Ta = W[9];		    Tc = FMA(T8, T9, Ta * Tb);		    T2n = FNMS(Ta, T9, T8 * Tb);	       }	       {		    E Te, Tg, Td, Tf;		    Te = ri[WS(rs, 15)];		    Tg = ii[WS(rs, 15)];		    Td = W[28];		    Tf = W[29];		    Th = FMA(Td, Te, Tf * Tg);		    T2o = FNMS(Tf, Te, Td * Tg);	       }	       {		    E T7, Ti, T4e, T4f;		    T7 = T1 + T6;		    Ti = Tc + Th;		    Tj = T7 - Ti;		    T1R = T7 + Ti;		    T4e = T3O - T3N;		    T4f = Tc - Th;		    T4g = T4e - T4f;		    T4p = T4f + T4e;	       }	       {		    E T2m, T2p, T3M, T3P;		    T2m = T1 - T6;		    T2p = T2n - T2o;		    T2q = T2m - T2p;		    T37 = T2m + T2p;		    T3M = T2n + T2o;		    T3P = T3N + T3O;		    T3Q = T3M + T3P;		    T42 = T3P - T3M;	       }	  }	  {	       E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26;	       E T2H;	       {		    E T19, T1Z, T1e, T20;		    {			 E T16, T18, T15, T17;			 T16 = ri[WS(rs, 8)];			 T18 = ii[WS(rs, 8)];			 T15 = W[14];			 T17 = W[15];			 T19 = FMA(T15, T16, T17 * T18);			 T1Z = FNMS(T17, T16, T15 * T18);		    }		    {			 E T1b, T1d, T1a, T1c;			 T1b = ri[WS(rs, 18)];			 T1d = ii[WS(rs, 18)];			 T1a = W[34];			 T1c = W[35];			 T1e = FMA(T1a, T1b, T1c * T1d);			 T20 = FNMS(T1c, T1b, T1a * T1d);		    }		    T1f = T19 + T1e;		    T3g = T1Z + T20;		    T21 = T1Z - T20;		    T2C = T19 - T1e;	       }	       {		    E T1H, T2I, T1M, T2J;		    {			 E T1E, T1G, T1D, T1F;			 T1E = ri[WS(rs, 17)];			 T1G = ii[WS(rs, 17)];			 T1D = W[32];			 T1F = W[33];			 T1H = FMA(T1D, T1E, T1F * T1G);			 T2I = FNMS(T1F, T1E, T1D * T1G);		    }		    {			 E T1J, T1L, T1I, T1K;			 T1J = ri[WS(rs, 7)];			 T1L = ii[WS(rs, 7)];			 T1I = W[12];			 T1K = W[13];			 T1M = FMA(T1I, T1J, T1K * T1L);			 T2J = FNMS(T1K, T1J, T1I * T1L);		    }		    T1N = T1H + T1M;		    T3k = T2I + T2J;		    T27 = T1H - T1M;		    T2K = T2I - T2J;	       }	       {		    E T1k, T2D, T1p, T2E;		    {			 E T1h, T1j, T1g, T1i;			 T1h = ri[WS(rs, 13)];			 T1j = ii[WS(rs, 13)];			 T1g = W[24];			 T1i = W[25];			 T1k = FMA(T1g, T1h, T1i * T1j);			 T2D = FNMS(T1i, T1h, T1g * T1j);		    }		    {			 E T1m, T1o, T1l, T1n;			 T1m = ri[WS(rs, 3)];			 T1o = ii[WS(rs, 3)];			 T1l = W[4];			 T1n = W[5];			 T1p = FMA(T1l, T1m, T1n * T1o);			 T2E = FNMS(T1n, T1m, T1l * T1o);		    }		    T1q = T1k + T1p;		    T3h = T2D + T2E;		    T22 = T1k - T1p;		    T2F = T2D - T2E;	       }	       {		    E T1w, T24, T1B, T25;		    {			 E T1t, T1v, T1s, T1u;			 T1t = ri[WS(rs, 12)];			 T1v = ii[WS(rs, 12)];			 T1s = W[22];			 T1u = W[23];			 T1w = FMA(T1s, T1t, T1u * T1v);			 T24 = FNMS(T1u, T1t, T1s * T1v);		    }		    {			 E T1y, T1A, T1x, T1z;			 T1y = ri[WS(rs, 2)];			 T1A = ii[WS(rs, 2)];			 T1x = W[2];			 T1z = W[3];			 T1B = FMA(T1x, T1y, T1z * T1A);			 T25 = FNMS(T1z, T1y, T1x * T1A);		    }		    T1C = T1w + T1B;		    T3j = T24 + T25;		    T26 = T24 - T25;		    T2H = T1w - T1B;	       }	       T1r = T1f - T1q;	       T1O = T1C - T1N;	       T1P = T1r + T1O;	       T3i = T3g - T3h;	       T3l = T3j - T3k;	       T44 = T3i + T3l;	       T3D = T3g + T3h;	       T3E = T3j + T3k;	       T3K = T3D + T3E;	       T1V = T1f + T1q;	       T1W = T1C + T1N;	       T1X = T1V + T1W;	       T23 = T21 + T22;	       T28 = T26 + T27;	       T4r = T23 + T28;	       T2W = T21 - T22;	       T2X = T26 - T27;	       T4c = T2W + T2X;	       T33 = T2C + T2F;	       T34 = T2H + T2K;	       T35 = T33 + T34;	       T2G = T2C - T2F;	       T2L = T2H - T2K;	       T2M = T2G + T2L;	  }	  {	       E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h;	       E T2w;	       {		    E To, T2a, Tt, T2b;		    {			 E Tl, Tn, Tk, Tm;			 Tl = ri[WS(rs, 4)];			 Tn = ii[WS(rs, 4)];			 Tk = W[6];			 Tm = W[7];			 To = FMA(Tk, Tl, Tm * Tn);			 T2a = FNMS(Tm, Tl, Tk * Tn);		    }		    {			 E Tq, Ts, Tp, Tr;			 Tq = ri[WS(rs, 14)];			 Ts = ii[WS(rs, 14)];			 Tp = W[26];			 Tr = W[27];			 Tt = FMA(Tp, Tq, Tr * Ts);			 T2b = FNMS(Tr, Tq, Tp * Ts);		    }		    Tu = To + Tt;		    T3n = T2a + T2b;		    T2c = T2a - T2b;		    T2r = To - Tt;	       }	       {		    E TW, T2x, T11, T2y;		    {			 E TT, TV, TS, TU;			 TT = ri[WS(rs, 1)];			 TV = ii[WS(rs, 1)];			 TS = W[0];			 TU = W[1];			 TW = FMA(TS, TT, TU * TV);			 T2x = FNMS(TU, TT, TS * TV);		    }		    {			 E TY, T10, TX, TZ;			 TY = ri[WS(rs, 11)];			 T10 = ii[WS(rs, 11)];			 TX = W[20];			 TZ = W[21];			 T11 = FMA(TX, TY, TZ * T10);			 T2y = FNMS(TZ, TY, TX * T10);		    }		    T12 = TW + T11;		    T3r = T2x + T2y;		    T2i = TW - T11;		    T2z = T2x - T2y;	       }	       {		    E Tz, T2s, TE, T2t;		    {			 E Tw, Ty, Tv, Tx;			 Tw = ri[WS(rs, 9)];			 Ty = ii[WS(rs, 9)];			 Tv = W[16];			 Tx = W[17];			 Tz = FMA(Tv, Tw, Tx * Ty);			 T2s = FNMS(Tx, Tw, Tv * Ty);		    }		    {			 E TB, TD, TA, TC;			 TB = ri[WS(rs, 19)];			 TD = ii[WS(rs, 19)];			 TA = W[36];			 TC = W[37];			 TE = FMA(TA, TB, TC * TD);			 T2t = FNMS(TC, TB, TA * TD);		    }		    TF = Tz + TE;		    T3o = T2s + T2t;		    T2d = Tz - TE;		    T2u = T2s - T2t;	       }	       {		    E TL, T2f, TQ, T2g;		    {			 E TI, TK, TH, TJ;			 TI = ri[WS(rs, 16)];			 TK = ii[WS(rs, 16)];			 TH = W[30];			 TJ = W[31];			 TL = FMA(TH, TI, TJ * TK);			 T2f = FNMS(TJ, TI, TH * TK);		    }		    {			 E TN, TP, TM, TO;			 TN = ri[WS(rs, 6)];			 TP = ii[WS(rs, 6)];			 TM = W[10];			 TO = W[11];			 TQ = FMA(TM, TN, TO * TP);			 T2g = FNMS(TO, TN, TM * TP);		    }		    TR = TL + TQ;		    T3q = T2f + T2g;		    T2h = T2f - T2g;		    T2w = TL - TQ;	       }	       TG = Tu - TF;	       T13 = TR - T12;	       T14 = TG + T13;	       T3p = T3n - T3o;	       T3s = T3q - T3r;	       T43 = T3p + T3s;	       T3A = T3n + T3o;	       T3B = T3q + T3r;	       T3J = T3A + T3B;	       T1S = Tu + TF;	       T1T = TR + T12;	       T1U = T1S + T1T;	       T2e = T2c + T2d;	       T2j = T2h + T2i;	       T4q = T2e + T2j;	       T2T = T2c - T2d;	       T2U = T2h - T2i;	       T4b = T2T + T2U;	       T30 = T2r + T2u;	       T31 = T2w + T2z;	       T32 = T30 + T31;	       T2v = T2r - T2u;	       T2A = T2w - T2z;	       T2B = T2v + T2A;	  }	  {	       E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f;	       T3e = KP559016994 * (T14 - T1P);	       T1Q = T14 + T1P;	       T3d = FNMS(KP250000000, T1Q, Tj);	       T3m = T3i - T3l;	       T3t = T3p - T3s;	       T3u = FNMS(KP587785252, T3t, KP951056516 * T3m);	       T3w = FMA(KP951056516, T3t, KP587785252 * T3m);	       ri[WS(rs, 10)] = Tj + T1Q;	       T3v = T3e + T3d;	       ri[WS(rs, 14)] = T3v - T3w;	       ri[WS(rs, 6)] = T3v + T3w;	       T3f = T3d - T3e;	       ri[WS(rs, 2)] = T3f - T3u;	       ri[WS(rs, 18)] = T3f + T3u;	  }	  {	       E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48;	       T47 = KP559016994 * (T43 - T44);	       T45 = T43 + T44;	       T46 = FNMS(KP250000000, T45, T42);	       T3Z = T1r - T1O;	       T40 = TG - T13;	       T41 = FNMS(KP587785252, T40, KP951056516 * T3Z);	       T4a = FMA(KP951056516, T40, KP587785252 * T3Z);	       ii[WS(rs, 10)] = T45 + T42;	       T49 = T47 + T46;	       ii[WS(rs, 6)] = T49 - T4a;	       ii[WS(rs, 14)] = T4a + T49;	       T48 = T46 - T47;	       ii[WS(rs, 2)] = T41 + T48;	       ii[WS(rs, 18)] = T48 - T41;	  }	  {	       E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z;	       T3x = KP559016994 * (T1U - T1X);	       T1Y = T1U + T1X;	       T3y = FNMS(KP250000000, T1Y, T1R);	       T3C = T3A - T3B;	       T3F = T3D - T3E;	       T3G = FMA(KP951056516, T3C, KP587785252 * T3F);	       T3I = FNMS(KP587785252, T3C, KP951056516 * T3F);	       ri[0] = T1R + T1Y;	       T3H = T3y - T3x;	       ri[WS(rs, 12)] = T3H - T3I;	       ri[WS(rs, 8)] = T3H + T3I;	       T3z = T3x + T3y;	       ri[WS(rs, 4)] = T3z - T3G;	       ri[WS(rs, 16)] = T3z + T3G;	  }	  {	       E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W;	       T3U = KP559016994 * (T3J - T3K);	       T3L = T3J + T3K;	       T3V = FNMS(KP250000000, T3L, T3Q);	       T3R = T1S - T1T;	       T3S = T1V - T1W;	       T3T = FMA(KP951056516, T3R, KP587785252 * T3S);	       T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S);	       ii[0] = T3L + T3Q;	       T3X = T3V - T3U;	       ii[WS(rs, 8)] = T3X - T3Y;	       ii[WS(rs, 12)] = T3Y + T3X;	       T3W = T3U + T3V;	       ii[WS(rs, 4)] = T3T + T3W;	       ii[WS(rs, 16)] = T3W - T3T;	  }	  {	       E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q;	       T2P = KP559016994 * (T2B - T2M);	       T2N = T2B + T2M;	       T2O = FNMS(KP250000000, T2N, T2q);	       T29 = T23 - T28;	       T2k = T2e - T2j;	       T2l = FNMS(KP587785252, T2k, KP951056516 * T29);	       T2R = FMA(KP951056516, T2k, KP587785252 * T29);	       ri[WS(rs, 15)] = T2q + T2N;	       T2S = T2P + T2O;	       ri[WS(rs, 11)] = T2R + T2S;	       ri[WS(rs, 19)] = T2S - T2R;	       T2Q = T2O - T2P;	       ri[WS(rs, 3)] = T2l + T2Q;	       ri[WS(rs, 7)] = T2Q - T2l;	  }	  {	       E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v;	       T4u = KP559016994 * (T4q - T4r);	       T4s = T4q + T4r;	       T4t = FNMS(KP250000000, T4s, T4p);	       T4w = T2G - T2L;	       T4x = T2v - T2A;	       T4y = FNMS(KP587785252, T4x, KP951056516 * T4w);	       T4A = FMA(KP951056516, T4x, KP587785252 * T4w);	       ii[WS(rs, 15)] = T4s + T4p;	       T4z = T4u + T4t;	       ii[WS(rs, 11)] = T4z - T4A;	       ii[WS(rs, 19)] = T4A + T4z;	       T4v = T4t - T4u;	       ii[WS(rs, 3)] = T4v - T4y;	       ii[WS(rs, 7)] = T4y + T4v;	  }	  {	       E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a;	       T36 = KP559016994 * (T32 - T35);	       T38 = T32 + T35;	       T39 = FNMS(KP250000000, T38, T37);	       T2V = T2T - T2U;	       T2Y = T2W - T2X;	       T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);	       T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y);	       ri[WS(rs, 5)] = T37 + T38;	       T3c = T39 - T36;	       ri[WS(rs, 13)] = T3b + T3c;	       ri[WS(rs, 17)] = T3c - T3b;	       T3a = T36 + T39;	       ri[WS(rs, 1)] = T2Z + T3a;	       ri[WS(rs, 9)] = T3a - T2Z;	  }	  {	       E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j;	       T4d = KP559016994 * (T4b - T4c);	       T4h = T4b + T4c;	       T4i = FNMS(KP250000000, T4h, T4g);	       T4k = T30 - T31;	       T4l = T33 - T34;	       T4m = FMA(KP951056516, T4k, KP587785252 * T4l);	       T4o = FNMS(KP587785252, T4k, KP951056516 * T4l);	       ii[WS(rs, 5)] = T4h + T4g;	       T4n = T4i - T4d;	       ii[WS(rs, 13)] = T4n - T4o;	       ii[WS(rs, 17)] = T4o + T4n;	       T4j = T4d + T4i;	       ii[WS(rs, 1)] = T4j - T4m;	       ii[WS(rs, 9)] = T4m + T4j;	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 0, 20},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 };void X(codelet_t1_20) (planner *p) {     X(kdft_dit_register) (p, t1_20, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -