📄 t1_20.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:51 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h *//* * This function contains 246 FP additions, 148 FP multiplications, * (or, 136 additions, 38 multiplications, 110 fused multiply/add), * 97 stack variables, 4 constants, and 80 memory accesses */#include "t.h"static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) { E T4P, T4Y, T50, T4U, T4S, T4T, T4Z, T4V; { E T4N, T4r, T8, T2i, T4n, T2n, T4O, Tl, T2v, T3v, T40, T4b, TN, T2b, T3F; E T3i, T2R, T3z, T3W, T4f, T27, T2f, T3J, T3a, T2K, T3y, T3T, T4e, T1G, T2e; E T3I, T33, T2C, T3w, T43, T4c, T1e, T2c, T3G, T3p; { E T1, T4q, T3, T6, T2, T5; T1 = ri[0]; T4q = ii[0]; T3 = ri[WS(rs, 10)]; T6 = ii[WS(rs, 10)]; T2 = W[18]; T5 = W[19]; { E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti; { E T4o, T4, T9, T4p, T7; Ta = ri[WS(rs, 5)]; Td = ii[WS(rs, 5)]; T4o = T2 * T6; T4 = T2 * T3; T9 = W[8]; Tg = ri[WS(rs, 15)]; T4p = FNMS(T5, T3, T4o); T7 = FMA(T5, T6, T4); T2j = T9 * Td; Tb = T9 * Ta; T4N = T4q - T4p; T4r = T4p + T4q; T8 = T1 + T7; T2i = T1 - T7; Tj = ii[WS(rs, 15)]; Tf = W[28]; } Tc = W[9]; Ti = W[29]; { E T3d, Ts, T2t, TL, TB, TE, TD, T3f, Ty, T2q, TC; { E TH, TK, TJ, T2s, TI; { E To, Tr, Tp, T3c, Tq, TG; { E T2k, Te, T2m, Tk, T2l, Th, Tn; To = ri[WS(rs, 4)]; T2l = Tf * Tj; Th = Tf * Tg; T2k = FNMS(Tc, Ta, T2j); Te = FMA(Tc, Td, Tb); T2m = FNMS(Ti, Tg, T2l); Tk = FMA(Ti, Tj, Th); Tr = ii[WS(rs, 4)]; Tn = W[6]; T4n = T2k + T2m; T2n = T2k - T2m; T4O = Te - Tk; Tl = Te + Tk; Tp = Tn * To; T3c = Tn * Tr; } Tq = W[7]; TH = ri[WS(rs, 19)]; TK = ii[WS(rs, 19)]; TG = W[36]; T3d = FNMS(Tq, To, T3c); Ts = FMA(Tq, Tr, Tp); TJ = W[37]; T2s = TG * TK; TI = TG * TH; } { E Tu, Tx, Tt, Tw, T3e, Tv, TA; Tu = ri[WS(rs, 14)]; Tx = ii[WS(rs, 14)]; T2t = FNMS(TJ, TH, T2s); TL = FMA(TJ, TK, TI); Tt = W[26]; Tw = W[27]; TB = ri[WS(rs, 9)]; TE = ii[WS(rs, 9)]; T3e = Tt * Tx; Tv = Tt * Tu; TA = W[16]; TD = W[17]; T3f = FNMS(Tw, Tu, T3e); Ty = FMA(Tw, Tx, Tv); T2q = TA * TE; TC = TA * TB; } } { E T3g, T3Y, Tz, T2p, T2r, TF; T3g = T3d - T3f; T3Y = T3d + T3f; Tz = Ts + Ty; T2p = Ts - Ty; T2r = FNMS(TD, TB, T2q); TF = FMA(TD, TE, TC); { E T3Z, T2u, T3h, TM; T3Z = T2r + T2t; T2u = T2r - T2t; T3h = TF - TL; TM = TF + TL; T2v = T2p - T2u; T3v = T2p + T2u; T40 = T3Y - T3Z; T4b = T3Y + T3Z; TN = Tz - TM; T2b = Tz + TM; T3F = T3g - T3h; T3i = T3g + T3h; } } } } } { E T35, T1M, T2P, T25, T1V, T1Y, T1X, T37, T1S, T2M, T1W; { E T21, T24, T23, T2O, T22; { E T1I, T1L, T1H, T1K, T34, T1J, T20; T1I = ri[WS(rs, 12)]; T1L = ii[WS(rs, 12)]; T1H = W[22]; T1K = W[23]; T21 = ri[WS(rs, 7)]; T24 = ii[WS(rs, 7)]; T34 = T1H * T1L; T1J = T1H * T1I; T20 = W[12]; T23 = W[13]; T35 = FNMS(T1K, T1I, T34); T1M = FMA(T1K, T1L, T1J); T2O = T20 * T24; T22 = T20 * T21; } { E T1O, T1R, T1N, T1Q, T36, T1P, T1U; T1O = ri[WS(rs, 2)]; T1R = ii[WS(rs, 2)]; T2P = FNMS(T23, T21, T2O); T25 = FMA(T23, T24, T22); T1N = W[2]; T1Q = W[3]; T1V = ri[WS(rs, 17)]; T1Y = ii[WS(rs, 17)]; T36 = T1N * T1R; T1P = T1N * T1O; T1U = W[32]; T1X = W[33]; T37 = FNMS(T1Q, T1O, T36); T1S = FMA(T1Q, T1R, T1P); T2M = T1U * T1Y; T1W = T1U * T1V; } } { E T38, T3U, T1T, T2L, T2N, T1Z; T38 = T35 - T37; T3U = T35 + T37; T1T = T1M + T1S; T2L = T1M - T1S; T2N = FNMS(T1X, T1V, T2M); T1Z = FMA(T1X, T1Y, T1W); { E T3V, T2Q, T39, T26; T3V = T2N + T2P; T2Q = T2N - T2P; T39 = T1Z - T25; T26 = T1Z + T25; T2R = T2L - T2Q; T3z = T2L + T2Q; T3W = T3U - T3V; T4f = T3U + T3V; T27 = T1T - T26; T2f = T1T + T26; T3J = T38 - T39; T3a = T38 + T39; } } } { E T2Y, T1l, T2I, T1E, T1u, T1x, T1w, T30, T1r, T2F, T1v; { E T1A, T1D, T1C, T2H, T1B; { E T1h, T1k, T1g, T1j, T2X, T1i, T1z; T1h = ri[WS(rs, 8)]; T1k = ii[WS(rs, 8)]; T1g = W[14]; T1j = W[15]; T1A = ri[WS(rs, 3)]; T1D = ii[WS(rs, 3)]; T2X = T1g * T1k; T1i = T1g * T1h; T1z = W[4]; T1C = W[5]; T2Y = FNMS(T1j, T1h, T2X); T1l = FMA(T1j, T1k, T1i); T2H = T1z * T1D; T1B = T1z * T1A; } { E T1n, T1q, T1m, T1p, T2Z, T1o, T1t; T1n = ri[WS(rs, 18)]; T1q = ii[WS(rs, 18)]; T2I = FNMS(T1C, T1A, T2H); T1E = FMA(T1C, T1D, T1B); T1m = W[34]; T1p = W[35]; T1u = ri[WS(rs, 13)]; T1x = ii[WS(rs, 13)]; T2Z = T1m * T1q; T1o = T1m * T1n; T1t = W[24]; T1w = W[25]; T30 = FNMS(T1p, T1n, T2Z); T1r = FMA(T1p, T1q, T1o); T2F = T1t * T1x; T1v = T1t * T1u; } } { E T31, T3R, T1s, T2E, T2G, T1y; T31 = T2Y - T30; T3R = T2Y + T30; T1s = T1l + T1r; T2E = T1l - T1r; T2G = FNMS(T1w, T1u, T2F); T1y = FMA(T1w, T1x, T1v); { E T3S, T2J, T32, T1F; T3S = T2G + T2I; T2J = T2G - T2I; T32 = T1y - T1E; T1F = T1y + T1E; T2K = T2E - T2J; T3y = T2E + T2J; T3T = T3R - T3S; T4e = T3R + T3S; T1G = T1s - T1F; T2e = T1s + T1F; T3I = T31 - T32; T33 = T31 + T32; } } } { E T3k, TT, T2A, T1c, T12, T15, T14, T3m, TZ, T2x, T13; { E T18, T1b, T1a, T2z, T19; { E TP, TS, TO, TR, T3j, TQ, T17; TP = ri[WS(rs, 16)]; TS = ii[WS(rs, 16)]; TO = W[30]; TR = W[31]; T18 = ri[WS(rs, 11)]; T1b = ii[WS(rs, 11)]; T3j = TO * TS; TQ = TO * TP; T17 = W[20]; T1a = W[21]; T3k = FNMS(TR, TP, T3j); TT = FMA(TR, TS, TQ); T2z = T17 * T1b; T19 = T17 * T18; } { E TV, TY, TU, TX, T3l, TW, T11; TV = ri[WS(rs, 6)]; TY = ii[WS(rs, 6)]; T2A = FNMS(T1a, T18, T2z); T1c = FMA(T1a, T1b, T19); TU = W[10]; TX = W[11]; T12 = ri[WS(rs, 1)]; T15 = ii[WS(rs, 1)]; T3l = TU * TY; TW = TU * TV; T11 = W[0]; T14 = W[1]; T3m = FNMS(TX, TV, T3l); TZ = FMA(TX, TY, TW); T2x = T11 * T15; T13 = T11 * T12; } } { E T3n, T41, T10, T2w, T2y, T16; T3n = T3k - T3m; T41 = T3k + T3m; T10 = TT + TZ; T2w = TT - TZ; T2y = FNMS(T14, T12, T2x); T16 = FMA(T14, T15, T13); { E T42, T2B, T3o, T1d; T42 = T2y + T2A; T2B = T2y - T2A; T3o = T16 - T1c; T1d = T16 + T1c; T2C = T2w - T2B; T3w = T2w + T2B; T43 = T41 - T42; T4c = T41 + T42; T1e = T10 - T1d; T2c = T10 + T1d; T3G = T3n - T3o; T3p = T3n + T3o; } } } { E T4s, T4k, T4l, T4h, T4j, T49, T4y, T4A, T48; { E T4D, T4C, T2a, T47, T45, T4B, T4M, T4K, T46, T3Q; { E Tm, T1f, T4J, T4I, T28, T3X, T44, T29, T3P, T3O; T4D = T3T + T3W; T3X = T3T - T3W; T44 = T40 - T43; T4C = T40 + T43; T2a = T8 + Tl; Tm = T8 - Tl; T1f = TN + T1e; T4J = TN - T1e; T4I = T1G - T27; T28 = T1G + T27; T47 = FMA(KP618033988, T3X, T44); T45 = FNMS(KP618033988, T44, T3X); T29 = T1f + T28; T3P = T1f - T28; T4B = T4r - T4n; T4s = T4n + T4r; ri[WS(rs, 10)] = Tm + T29; T3O = FNMS(KP250000000, T29, Tm); T4M = FMA(KP618033988, T4I, T4J); T4K = FNMS(KP618033988, T4J, T4I); T46 = FMA(KP559016994, T3P, T3O); T3Q = FNMS(KP559016994, T3P, T3O); } { E T2d, T4w, T4x, T2g, T2h; { E T4d, T4G, T4F, T4g, T4E, T4L, T4H; T4k = T4b + T4c; T4d = T4b - T4c; T4G = T4C - T4D; T4E = T4C + T4D; ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q); ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); ri[WS(rs, 6)] = FMA(KP951056516, T47, T46); ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46); ii[WS(rs, 10)] = T4E + T4B; T4F = FNMS(KP250000000, T4E, T4B); T4g = T4e - T4f; T4l = T4e + T4f; T2d = T2b + T2c; T4w = T2b - T2c; T4L = FMA(KP559016994, T4G, T4F); T4H = FNMS(KP559016994, T4G, T4F); T4h = FMA(KP618033988, T4g, T4d); T4j = FNMS(KP618033988, T4d, T4g); ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H); ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L); ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L); T4x = T2e - T2f; T2g = T2e + T2f; } T2h = T2d + T2g; T49 = T2d - T2g; T4y = FMA(KP618033988, T4x, T4w); T4A = FNMS(KP618033988, T4w, T4x); ri[0] = T2a + T2h; T48 = FNMS(KP250000000, T2h, T2a); } } { E T3u, T51, T5a, T5c, T56, T54; { E T53, T52, T3t, T3r, T2o, T59, T58, T2T, T2V, T4u, T4t, T2U, T3s, T2W; { E T3b, T3q, T4i, T4a, T4m; T53 = T33 + T3a; T3b = T33 - T3a; T3q = T3i - T3p; T52 = T3i + T3p; T4i = FNMS(KP559016994, T49, T48); T4a = FMA(KP559016994, T49, T48); T4m = T4k + T4l; T4u = T4k - T4l; ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a); ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i); ii[0] = T4m + T4s; T4t = FNMS(KP250000000, T4m, T4s); T3t = FMA(KP618033988, T3b, T3q); T3r = FNMS(KP618033988, T3q, T3b); } T3u = T2i + T2n; T2o = T2i - T2n; { E T4v, T4z, T2D, T2S; T4v = FMA(KP559016994, T4u, T4t); T4z = FNMS(KP559016994, T4u, T4t); T2D = T2v + T2C; T59 = T2v - T2C; T58 = T2K - T2R; T2S = T2K + T2R; ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v); ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z); ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z); T2T = T2D + T2S; T2V = T2D - T2S; } ri[WS(rs, 15)] = T2o + T2T; T2U = FNMS(KP250000000, T2T, T2o); T51 = T4O + T4N; T4P = T4N - T4O; T5a = FNMS(KP618033988, T59, T58); T5c = FMA(KP618033988, T58, T59); T3s = FMA(KP559016994, T2V, T2U); T2W = FNMS(KP559016994, T2V, T2U); ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s); ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s); T56 = T52 - T53; T54 = T52 + T53; } { E T4Q, T4R, T3N, T3L, T4W, T4X, T3B, T3D, T3H, T3K, T55, T3C, T3M, T3E; T4Q = T3F + T3G; T3H = T3F - T3G; T3K = T3I - T3J; T4R = T3I + T3J; ii[WS(rs, 15)] = T54 + T51; T55 = FNMS(KP250000000, T54, T51); T3N = FNMS(KP618033988, T3H, T3K); T3L = FMA(KP618033988, T3K, T3H); { E T57, T5b, T3x, T3A; T57 = FNMS(KP559016994, T56, T55); T5b = FMA(KP559016994, T56, T55); T3x = T3v + T3w; T4W = T3v - T3w; T4X = T3y - T3z; T3A = T3y + T3z; ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57); ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57); ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b); ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b); T3B = T3x + T3A; T3D = T3x - T3A; } ri[WS(rs, 5)] = T3u + T3B; T3C = FNMS(KP250000000, T3B, T3u); T4Y = FMA(KP618033988, T4X, T4W); T50 = FNMS(KP618033988, T4W, T4X); T3M = FNMS(KP559016994, T3D, T3C); T3E = FMA(KP559016994, T3D, T3C); ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -