📄 n1_25.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:13 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include n.h *//* * This function contains 352 FP additions, 268 FP multiplications, * (or, 84 additions, 0 multiplications, 268 fused multiply/add), * 164 stack variables, 47 constants, and 100 memory accesses */#include "n.h"static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DK(KP803003575, +0.803003575438660414833440593570376004635464850); DK(KP554608978, +0.554608978404018097464974850792216217022558774); DK(KP248028675, +0.248028675328619457762448260696444630363259177); DK(KP726211448, +0.726211448929902658173535992263577167607493062); DK(KP525970792, +0.525970792408939708442463226536226366643874659); DK(KP992114701, +0.992114701314477831049793042785778521453036709); DK(KP851038619, +0.851038619207379630836264138867114231259902550); DK(KP912575812, +0.912575812670962425556968549836277086778922727); DK(KP912018591, +0.912018591466481957908415381764119056233607330); DK(KP943557151, +0.943557151597354104399655195398983005179443399); DK(KP614372930, +0.614372930789563808870829930444362096004872855); DK(KP621716863, +0.621716863012209892444754556304102309693593202); DK(KP994076283, +0.994076283785401014123185814696322018529298887); DK(KP734762448, +0.734762448793050413546343770063151342619912334); DK(KP772036680, +0.772036680810363904029489473607579825330539880); DK(KP126329378, +0.126329378446108174786050455341811215027378105); DK(KP827271945, +0.827271945972475634034355757144307982555673741); DK(KP949179823, +0.949179823508441261575555465843363271711583843); DK(KP860541664, +0.860541664367944677098261680920518816412804187); DK(KP557913902, +0.557913902031834264187699648465567037992437152); DK(KP249506682, +0.249506682107067890488084201715862638334226305); DK(KP681693190, +0.681693190061530575150324149145440022633095390); DK(KP560319534, +0.560319534973832390111614715371676131169633784); DK(KP998026728, +0.998026728428271561952336806863450553336905220); DK(KP906616052, +0.906616052148196230441134447086066874408359177); DK(KP968479752, +0.968479752739016373193524836781420152702090879); DK(KP845997307, +0.845997307939530944175097360758058292389769300); DK(KP470564281, +0.470564281212251493087595091036643380879947982); DK(KP062914667, +0.062914667253649757225485955897349402364686947); DK(KP921177326, +0.921177326965143320250447435415066029359282231); DK(KP833417178, +0.833417178328688677408962550243238843138996060); DK(KP541454447, +0.541454447536312777046285590082819509052033189); DK(KP242145790, +0.242145790282157779872542093866183953459003101); DK(KP683113946, +0.683113946453479238701949862233725244439656928); DK(KP559154169, +0.559154169276087864842202529084232643714075927); DK(KP968583161, +0.968583161128631119490168375464735813836012403); DK(KP904730450, +0.904730450839922351881287709692877908104763647); DK(KP831864738, +0.831864738706457140726048799369896829771167132); DK(KP871714437, +0.871714437527667770979999223229522602943903653); DK(KP939062505, +0.939062505817492352556001843133229685779824606); DK(KP549754652, +0.549754652192770074288023275540779861653779767); DK(KP634619297, +0.634619297544148100711287640319130485732531031); DK(KP256756360, +0.256756360367726783319498520922669048172391148); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T3Y, T3U, T3W, T42, T44, T3X, T3R, T3V, T3Z, T43; { E T4Q, T1U, T9, T3b, T45, T3e, T46, T1D, T4P, T1R, Ts, T1K, T18, T1E, T4z; E T5f, T3z, T22, T4s, T5b, T3C, T2o, T3D, T2h, T4p, T5c, T4w, T5e, T3A, T29; E T2z, T2y, TL, T1L, T1r, T1F, T4a, T57, T3v, T2x, T4k, T55, T3s, T2T, T2D; E T4c, T3t, T2M, T4h, T54, T1v, T1C, T1Q; { E T1, T2, T3, T5, T6; T1 = ri[0]; T2 = ri[WS(is, 5)]; T3 = ri[WS(is, 20)]; T5 = ri[WS(is, 10)]; T6 = ri[WS(is, 15)]; { E T3a, T3c, T1y, T1z, T1A, T39, T4, T1S, T1B, T3d; T1v = ii[0]; T4 = T2 + T3; T1S = T2 - T3; { E T7, T1T, T8, T1w, T1x; T7 = T5 + T6; T1T = T5 - T6; T1w = ii[WS(is, 5)]; T1x = ii[WS(is, 20)]; T4Q = FNMS(KP618033988, T1S, T1T); T1U = FMA(KP618033988, T1T, T1S); T8 = T4 + T7; T3a = T4 - T7; T3c = T1w - T1x; T1y = T1w + T1x; T1z = ii[WS(is, 10)]; T1A = ii[WS(is, 15)]; T39 = FNMS(KP250000000, T8, T1); T9 = T1 + T8; } T1B = T1z + T1A; T3d = T1z - T1A; T3b = FMA(KP559016994, T3a, T39); T45 = FNMS(KP559016994, T3a, T39); T3e = FMA(KP618033988, T3d, T3c); T46 = FNMS(KP618033988, T3c, T3d); T1C = T1y + T1B; T1Q = T1y - T1B; } } { E T24, T23, T28, T4v; { E Ta, TQ, Tj, TZ, T1Z, T20, Th, T26, T27, T1X, TX, T2l, T2m, Tq, T2c; E T2e, T12, T15, T2f, T1P, TT, TW; Ta = ri[WS(is, 1)]; T1P = FNMS(KP250000000, T1C, T1v); T1D = T1v + T1C; TQ = ii[WS(is, 1)]; Tj = ri[WS(is, 4)]; T4P = FNMS(KP559016994, T1Q, T1P); T1R = FMA(KP559016994, T1Q, T1P); TZ = ii[WS(is, 4)]; { E Tb, Tc, Te, Tf; Tb = ri[WS(is, 6)]; Tc = ri[WS(is, 21)]; Te = ri[WS(is, 11)]; Tf = ri[WS(is, 16)]; { E TR, Td, Tg, TS, TU, TV; TR = ii[WS(is, 6)]; T1Z = Tc - Tb; Td = Tb + Tc; T20 = Tf - Te; Tg = Te + Tf; TS = ii[WS(is, 21)]; TU = ii[WS(is, 11)]; TV = ii[WS(is, 16)]; Th = Td + Tg; T24 = Td - Tg; T26 = TR - TS; TT = TR + TS; TW = TU + TV; T27 = TV - TU; } } { E Tk, Tl, Tn, To; Tk = ri[WS(is, 9)]; T1X = TT - TW; TX = TT + TW; Tl = ri[WS(is, 24)]; Tn = ri[WS(is, 14)]; To = ri[WS(is, 19)]; { E T10, Tm, Tp, T11, T13, T14; T10 = ii[WS(is, 9)]; T2l = Tl - Tk; Tm = Tk + Tl; T2m = To - Tn; Tp = Tn + To; T11 = ii[WS(is, 24)]; T13 = ii[WS(is, 14)]; T14 = ii[WS(is, 19)]; Tq = Tm + Tp; T2c = Tm - Tp; T2e = T11 - T10; T12 = T10 + T11; T15 = T13 + T14; T2f = T14 - T13; } } { E T2j, T2b, T1W, T21, T4y, T2i; { E Ti, T16, Tr, TY, T17; T23 = FNMS(KP250000000, Th, Ta); Ti = Ta + Th; T2j = T15 - T12; T16 = T12 + T15; Tr = Tj + Tq; T2b = FMS(KP250000000, Tq, Tj); T1W = FNMS(KP250000000, TX, TQ); TY = TQ + TX; T21 = FMA(KP618033988, T20, T1Z); T4y = FNMS(KP618033988, T1Z, T20); T2i = FNMS(KP250000000, T16, TZ); T17 = TZ + T16; Ts = Ti + Tr; T1K = Ti - Tr; T18 = TY - T17; T1E = TY + T17; } { E T2n, T4r, T4x, T1Y; T2n = FMA(KP618033988, T2m, T2l); T4r = FNMS(KP618033988, T2l, T2m); T4x = FNMS(KP559016994, T1X, T1W); T1Y = FMA(KP559016994, T1X, T1W); { E T4o, T2g, T2d, T4n, T4q, T2k; T4o = FNMS(KP618033988, T2e, T2f); T2g = FMA(KP618033988, T2f, T2e); T4z = FMA(KP951056516, T4y, T4x); T5f = FNMS(KP951056516, T4y, T4x); T3z = FNMS(KP951056516, T21, T1Y); T22 = FMA(KP951056516, T21, T1Y); T4q = FMA(KP559016994, T2j, T2i); T2k = FNMS(KP559016994, T2j, T2i); T4s = FMA(KP951056516, T4r, T4q); T5b = FNMS(KP951056516, T4r, T4q); T3C = FNMS(KP951056516, T2n, T2k); T2o = FMA(KP951056516, T2n, T2k); T2d = FNMS(KP559016994, T2c, T2b); T4n = FMA(KP559016994, T2c, T2b); T28 = FNMS(KP618033988, T27, T26); T4v = FMA(KP618033988, T26, T27); T3D = FNMS(KP951056516, T2g, T2d); T2h = FMA(KP951056516, T2g, T2d); T4p = FMA(KP951056516, T4o, T4n); T5c = FNMS(KP951056516, T4o, T4n); } } } } { E Tt, T19, TC, T1i, T2u, T2v, TA, T2B, T2C, T2s, T1g, T2J, T2K, TJ, T2O; E T2Q, T1l, T1o, T2R; { E T4u, T25, T1c, T1f; Tt = ri[WS(is, 2)]; T19 = ii[WS(is, 2)]; TC = ri[WS(is, 3)]; T4u = FNMS(KP559016994, T24, T23); T25 = FMA(KP559016994, T24, T23); T1i = ii[WS(is, 3)]; { E Tu, Tv, Tx, Ty; Tu = ri[WS(is, 7)]; T4w = FNMS(KP951056516, T4v, T4u); T5e = FMA(KP951056516, T4v, T4u); T3A = FNMS(KP951056516, T28, T25); T29 = FMA(KP951056516, T28, T25); Tv = ri[WS(is, 22)]; Tx = ri[WS(is, 12)]; Ty = ri[WS(is, 17)]; { E T1a, Tw, Tz, T1b, T1d, T1e; T1a = ii[WS(is, 7)]; T2u = Tv - Tu; Tw = Tu + Tv; T2v = Ty - Tx; Tz = Tx + Ty; T1b = ii[WS(is, 22)]; T1d = ii[WS(is, 12)]; T1e = ii[WS(is, 17)]; TA = Tw + Tz; T2z = Tz - Tw; T2B = T1b - T1a; T1c = T1a + T1b; T1f = T1d + T1e; T2C = T1d - T1e; } } { E TD, TE, TG, TH; TD = ri[WS(is, 8)]; T2s = T1f - T1c; T1g = T1c + T1f; TE = ri[WS(is, 23)]; TG = ri[WS(is, 13)]; TH = ri[WS(is, 18)]; { E T1j, TF, TI, T1k, T1m, T1n; T1j = ii[WS(is, 8)]; T2J = TD - TE; TF = TD + TE; T2K = TG - TH; TI = TG + TH; T1k = ii[WS(is, 23)]; T1m = ii[WS(is, 13)]; T1n = ii[WS(is, 18)]; TJ = TF + TI; T2O = TI - TF; T2Q = T1k - T1j; T1l = T1j + T1k; T1o = T1m + T1n; T2R = T1n - T1m; } } } { E T2H, T2N, T2r, T2w, T49, T2G; { E TB, T1p, TK, T1h, T1q; T2y = FNMS(KP250000000, TA, Tt); TB = Tt + TA; T2H = T1o - T1l; T1p = T1l + T1o; TK = TC + TJ; T2N = FNMS(KP250000000, TJ, TC); T2r = FNMS(KP250000000, T1g, T19); T1h = T19 + T1g; T2w = FMA(KP618033988, T2v, T2u); T49 = FNMS(KP618033988, T2u, T2v); T2G = FNMS(KP250000000, T1p, T1i); T1q = T1i + T1p; TL = TB + TK; T1L = TB - TK; T1r = T1h - T1q; T1F = T1h + T1q; } { E T2S, T4j, T48, T2t; T2S = FMA(KP618033988, T2R, T2Q); T4j = FNMS(KP618033988, T2Q, T2R); T48 = FMA(KP559016994, T2s, T2r); T2t = FNMS(KP559016994, T2s, T2r); { E T4g, T2L, T2I, T4f, T4i, T2P; T4g = FNMS(KP618033988, T2J, T2K); T2L = FMA(KP618033988, T2K, T2J); T4a = FMA(KP951056516, T49, T48); T57 = FNMS(KP951056516, T49, T48); T3v = FNMS(KP951056516, T2w, T2t); T2x = FMA(KP951056516, T2w, T2t); T4i = FMA(KP559016994, T2O, T2N); T2P = FNMS(KP559016994, T2O, T2N); T4k = FNMS(KP951056516, T4j, T4i); T55 = FMA(KP951056516, T4j, T4i); T3s = FMA(KP951056516, T2S, T2P); T2T = FNMS(KP951056516, T2S, T2P); T2I = FNMS(KP559016994, T2H, T2G); T4f = FMA(KP559016994, T2H, T2G); T2D = FNMS(KP618033988, T2C, T2B); T4c = FMA(KP618033988, T2B, T2C); T3t = FMA(KP951056516, T2L, T2I); T2M = FNMS(KP951056516, T2L, T2I); T4h = FNMS(KP951056516, T4g, T4f); T54 = FMA(KP951056516, T4g, T4f); } } } } } { E T4d, T58, T3w, T3H, T3r, T3k, T36, T38, T3o, T3q, T3j, T2Z, T37; { E T2E, T1s, T1u, TP, T1t; { E TM, TO, TN, T4b, T2A; TM = Ts + TL; TO = Ts - TL; T4b = FMA(KP559016994, T2z, T2y); T2A = FNMS(KP559016994, T2z, T2y); TN = FNMS(KP250000000, TM, T9); T4d = FMA(KP951056516, T4c, T4b); T58 = FNMS(KP951056516, T4c, T4b); T3w = FMA(KP951056516, T2D, T2A); T2E = FNMS(KP951056516, T2D, T2A); T1s = FMA(KP618033988, T1r, T18); T1u = FNMS(KP618033988, T18, T1r); ro[0] = T9 + TM; TP = FMA(KP559016994, TO, TN); T1t = FNMS(KP559016994, TO, TN); } { E T1J, T1N, T1M, T1O, T1G, T1I, T1H; T1G = T1E + T1F; T1I = T1E - T1F; ro[WS(os, 15)] = FMA(KP951056516, T1u, T1t); ro[WS(os, 10)] = FNMS(KP951056516, T1u, T1t); ro[WS(os, 5)] = FMA(KP951056516, T1s, TP); ro[WS(os, 20)] = FNMS(KP951056516, T1s, TP); T1H = FNMS(KP250000000, T1G, T1D); io[0] = T1D + T1G; T1J = FMA(KP559016994, T1I, T1H); T1N = FNMS(KP559016994, T1I, T1H);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -