⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_25.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:13 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include n.h *//* * This function contains 352 FP additions, 268 FP multiplications, * (or, 84 additions, 0 multiplications, 268 fused multiply/add), * 164 stack variables, 47 constants, and 100 memory accesses */#include "n.h"static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){     DK(KP803003575, +0.803003575438660414833440593570376004635464850);     DK(KP554608978, +0.554608978404018097464974850792216217022558774);     DK(KP248028675, +0.248028675328619457762448260696444630363259177);     DK(KP726211448, +0.726211448929902658173535992263577167607493062);     DK(KP525970792, +0.525970792408939708442463226536226366643874659);     DK(KP992114701, +0.992114701314477831049793042785778521453036709);     DK(KP851038619, +0.851038619207379630836264138867114231259902550);     DK(KP912575812, +0.912575812670962425556968549836277086778922727);     DK(KP912018591, +0.912018591466481957908415381764119056233607330);     DK(KP943557151, +0.943557151597354104399655195398983005179443399);     DK(KP614372930, +0.614372930789563808870829930444362096004872855);     DK(KP621716863, +0.621716863012209892444754556304102309693593202);     DK(KP994076283, +0.994076283785401014123185814696322018529298887);     DK(KP734762448, +0.734762448793050413546343770063151342619912334);     DK(KP772036680, +0.772036680810363904029489473607579825330539880);     DK(KP126329378, +0.126329378446108174786050455341811215027378105);     DK(KP827271945, +0.827271945972475634034355757144307982555673741);     DK(KP949179823, +0.949179823508441261575555465843363271711583843);     DK(KP860541664, +0.860541664367944677098261680920518816412804187);     DK(KP557913902, +0.557913902031834264187699648465567037992437152);     DK(KP249506682, +0.249506682107067890488084201715862638334226305);     DK(KP681693190, +0.681693190061530575150324149145440022633095390);     DK(KP560319534, +0.560319534973832390111614715371676131169633784);     DK(KP998026728, +0.998026728428271561952336806863450553336905220);     DK(KP906616052, +0.906616052148196230441134447086066874408359177);     DK(KP968479752, +0.968479752739016373193524836781420152702090879);     DK(KP845997307, +0.845997307939530944175097360758058292389769300);     DK(KP470564281, +0.470564281212251493087595091036643380879947982);     DK(KP062914667, +0.062914667253649757225485955897349402364686947);     DK(KP921177326, +0.921177326965143320250447435415066029359282231);     DK(KP833417178, +0.833417178328688677408962550243238843138996060);     DK(KP541454447, +0.541454447536312777046285590082819509052033189);     DK(KP242145790, +0.242145790282157779872542093866183953459003101);     DK(KP683113946, +0.683113946453479238701949862233725244439656928);     DK(KP559154169, +0.559154169276087864842202529084232643714075927);     DK(KP968583161, +0.968583161128631119490168375464735813836012403);     DK(KP904730450, +0.904730450839922351881287709692877908104763647);     DK(KP831864738, +0.831864738706457140726048799369896829771167132);     DK(KP871714437, +0.871714437527667770979999223229522602943903653);     DK(KP939062505, +0.939062505817492352556001843133229685779824606);     DK(KP549754652, +0.549754652192770074288023275540779861653779767);     DK(KP634619297, +0.634619297544148100711287640319130485732531031);     DK(KP256756360, +0.256756360367726783319498520922669048172391148);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {	  E T3Y, T3U, T3W, T42, T44, T3X, T3R, T3V, T3Z, T43;	  {	       E T4Q, T1U, T9, T3b, T45, T3e, T46, T1D, T4P, T1R, Ts, T1K, T18, T1E, T4z;	       E T5f, T3z, T22, T4s, T5b, T3C, T2o, T3D, T2h, T4p, T5c, T4w, T5e, T3A, T29;	       E T2z, T2y, TL, T1L, T1r, T1F, T4a, T57, T3v, T2x, T4k, T55, T3s, T2T, T2D;	       E T4c, T3t, T2M, T4h, T54, T1v, T1C, T1Q;	       {		    E T1, T2, T3, T5, T6;		    T1 = ri[0];		    T2 = ri[WS(is, 5)];		    T3 = ri[WS(is, 20)];		    T5 = ri[WS(is, 10)];		    T6 = ri[WS(is, 15)];		    {			 E T3a, T3c, T1y, T1z, T1A, T39, T4, T1S, T1B, T3d;			 T1v = ii[0];			 T4 = T2 + T3;			 T1S = T2 - T3;			 {			      E T7, T1T, T8, T1w, T1x;			      T7 = T5 + T6;			      T1T = T5 - T6;			      T1w = ii[WS(is, 5)];			      T1x = ii[WS(is, 20)];			      T4Q = FNMS(KP618033988, T1S, T1T);			      T1U = FMA(KP618033988, T1T, T1S);			      T8 = T4 + T7;			      T3a = T4 - T7;			      T3c = T1w - T1x;			      T1y = T1w + T1x;			      T1z = ii[WS(is, 10)];			      T1A = ii[WS(is, 15)];			      T39 = FNMS(KP250000000, T8, T1);			      T9 = T1 + T8;			 }			 T1B = T1z + T1A;			 T3d = T1z - T1A;			 T3b = FMA(KP559016994, T3a, T39);			 T45 = FNMS(KP559016994, T3a, T39);			 T3e = FMA(KP618033988, T3d, T3c);			 T46 = FNMS(KP618033988, T3c, T3d);			 T1C = T1y + T1B;			 T1Q = T1y - T1B;		    }	       }	       {		    E T24, T23, T28, T4v;		    {			 E Ta, TQ, Tj, TZ, T1Z, T20, Th, T26, T27, T1X, TX, T2l, T2m, Tq, T2c;			 E T2e, T12, T15, T2f, T1P, TT, TW;			 Ta = ri[WS(is, 1)];			 T1P = FNMS(KP250000000, T1C, T1v);			 T1D = T1v + T1C;			 TQ = ii[WS(is, 1)];			 Tj = ri[WS(is, 4)];			 T4P = FNMS(KP559016994, T1Q, T1P);			 T1R = FMA(KP559016994, T1Q, T1P);			 TZ = ii[WS(is, 4)];			 {			      E Tb, Tc, Te, Tf;			      Tb = ri[WS(is, 6)];			      Tc = ri[WS(is, 21)];			      Te = ri[WS(is, 11)];			      Tf = ri[WS(is, 16)];			      {				   E TR, Td, Tg, TS, TU, TV;				   TR = ii[WS(is, 6)];				   T1Z = Tc - Tb;				   Td = Tb + Tc;				   T20 = Tf - Te;				   Tg = Te + Tf;				   TS = ii[WS(is, 21)];				   TU = ii[WS(is, 11)];				   TV = ii[WS(is, 16)];				   Th = Td + Tg;				   T24 = Td - Tg;				   T26 = TR - TS;				   TT = TR + TS;				   TW = TU + TV;				   T27 = TV - TU;			      }			 }			 {			      E Tk, Tl, Tn, To;			      Tk = ri[WS(is, 9)];			      T1X = TT - TW;			      TX = TT + TW;			      Tl = ri[WS(is, 24)];			      Tn = ri[WS(is, 14)];			      To = ri[WS(is, 19)];			      {				   E T10, Tm, Tp, T11, T13, T14;				   T10 = ii[WS(is, 9)];				   T2l = Tl - Tk;				   Tm = Tk + Tl;				   T2m = To - Tn;				   Tp = Tn + To;				   T11 = ii[WS(is, 24)];				   T13 = ii[WS(is, 14)];				   T14 = ii[WS(is, 19)];				   Tq = Tm + Tp;				   T2c = Tm - Tp;				   T2e = T11 - T10;				   T12 = T10 + T11;				   T15 = T13 + T14;				   T2f = T14 - T13;			      }			 }			 {			      E T2j, T2b, T1W, T21, T4y, T2i;			      {				   E Ti, T16, Tr, TY, T17;				   T23 = FNMS(KP250000000, Th, Ta);				   Ti = Ta + Th;				   T2j = T15 - T12;				   T16 = T12 + T15;				   Tr = Tj + Tq;				   T2b = FMS(KP250000000, Tq, Tj);				   T1W = FNMS(KP250000000, TX, TQ);				   TY = TQ + TX;				   T21 = FMA(KP618033988, T20, T1Z);				   T4y = FNMS(KP618033988, T1Z, T20);				   T2i = FNMS(KP250000000, T16, TZ);				   T17 = TZ + T16;				   Ts = Ti + Tr;				   T1K = Ti - Tr;				   T18 = TY - T17;				   T1E = TY + T17;			      }			      {				   E T2n, T4r, T4x, T1Y;				   T2n = FMA(KP618033988, T2m, T2l);				   T4r = FNMS(KP618033988, T2l, T2m);				   T4x = FNMS(KP559016994, T1X, T1W);				   T1Y = FMA(KP559016994, T1X, T1W);				   {					E T4o, T2g, T2d, T4n, T4q, T2k;					T4o = FNMS(KP618033988, T2e, T2f);					T2g = FMA(KP618033988, T2f, T2e);					T4z = FMA(KP951056516, T4y, T4x);					T5f = FNMS(KP951056516, T4y, T4x);					T3z = FNMS(KP951056516, T21, T1Y);					T22 = FMA(KP951056516, T21, T1Y);					T4q = FMA(KP559016994, T2j, T2i);					T2k = FNMS(KP559016994, T2j, T2i);					T4s = FMA(KP951056516, T4r, T4q);					T5b = FNMS(KP951056516, T4r, T4q);					T3C = FNMS(KP951056516, T2n, T2k);					T2o = FMA(KP951056516, T2n, T2k);					T2d = FNMS(KP559016994, T2c, T2b);					T4n = FMA(KP559016994, T2c, T2b);					T28 = FNMS(KP618033988, T27, T26);					T4v = FMA(KP618033988, T26, T27);					T3D = FNMS(KP951056516, T2g, T2d);					T2h = FMA(KP951056516, T2g, T2d);					T4p = FMA(KP951056516, T4o, T4n);					T5c = FNMS(KP951056516, T4o, T4n);				   }			      }			 }		    }		    {			 E Tt, T19, TC, T1i, T2u, T2v, TA, T2B, T2C, T2s, T1g, T2J, T2K, TJ, T2O;			 E T2Q, T1l, T1o, T2R;			 {			      E T4u, T25, T1c, T1f;			      Tt = ri[WS(is, 2)];			      T19 = ii[WS(is, 2)];			      TC = ri[WS(is, 3)];			      T4u = FNMS(KP559016994, T24, T23);			      T25 = FMA(KP559016994, T24, T23);			      T1i = ii[WS(is, 3)];			      {				   E Tu, Tv, Tx, Ty;				   Tu = ri[WS(is, 7)];				   T4w = FNMS(KP951056516, T4v, T4u);				   T5e = FMA(KP951056516, T4v, T4u);				   T3A = FNMS(KP951056516, T28, T25);				   T29 = FMA(KP951056516, T28, T25);				   Tv = ri[WS(is, 22)];				   Tx = ri[WS(is, 12)];				   Ty = ri[WS(is, 17)];				   {					E T1a, Tw, Tz, T1b, T1d, T1e;					T1a = ii[WS(is, 7)];					T2u = Tv - Tu;					Tw = Tu + Tv;					T2v = Ty - Tx;					Tz = Tx + Ty;					T1b = ii[WS(is, 22)];					T1d = ii[WS(is, 12)];					T1e = ii[WS(is, 17)];					TA = Tw + Tz;					T2z = Tz - Tw;					T2B = T1b - T1a;					T1c = T1a + T1b;					T1f = T1d + T1e;					T2C = T1d - T1e;				   }			      }			      {				   E TD, TE, TG, TH;				   TD = ri[WS(is, 8)];				   T2s = T1f - T1c;				   T1g = T1c + T1f;				   TE = ri[WS(is, 23)];				   TG = ri[WS(is, 13)];				   TH = ri[WS(is, 18)];				   {					E T1j, TF, TI, T1k, T1m, T1n;					T1j = ii[WS(is, 8)];					T2J = TD - TE;					TF = TD + TE;					T2K = TG - TH;					TI = TG + TH;					T1k = ii[WS(is, 23)];					T1m = ii[WS(is, 13)];					T1n = ii[WS(is, 18)];					TJ = TF + TI;					T2O = TI - TF;					T2Q = T1k - T1j;					T1l = T1j + T1k;					T1o = T1m + T1n;					T2R = T1n - T1m;				   }			      }			 }			 {			      E T2H, T2N, T2r, T2w, T49, T2G;			      {				   E TB, T1p, TK, T1h, T1q;				   T2y = FNMS(KP250000000, TA, Tt);				   TB = Tt + TA;				   T2H = T1o - T1l;				   T1p = T1l + T1o;				   TK = TC + TJ;				   T2N = FNMS(KP250000000, TJ, TC);				   T2r = FNMS(KP250000000, T1g, T19);				   T1h = T19 + T1g;				   T2w = FMA(KP618033988, T2v, T2u);				   T49 = FNMS(KP618033988, T2u, T2v);				   T2G = FNMS(KP250000000, T1p, T1i);				   T1q = T1i + T1p;				   TL = TB + TK;				   T1L = TB - TK;				   T1r = T1h - T1q;				   T1F = T1h + T1q;			      }			      {				   E T2S, T4j, T48, T2t;				   T2S = FMA(KP618033988, T2R, T2Q);				   T4j = FNMS(KP618033988, T2Q, T2R);				   T48 = FMA(KP559016994, T2s, T2r);				   T2t = FNMS(KP559016994, T2s, T2r);				   {					E T4g, T2L, T2I, T4f, T4i, T2P;					T4g = FNMS(KP618033988, T2J, T2K);					T2L = FMA(KP618033988, T2K, T2J);					T4a = FMA(KP951056516, T49, T48);					T57 = FNMS(KP951056516, T49, T48);					T3v = FNMS(KP951056516, T2w, T2t);					T2x = FMA(KP951056516, T2w, T2t);					T4i = FMA(KP559016994, T2O, T2N);					T2P = FNMS(KP559016994, T2O, T2N);					T4k = FNMS(KP951056516, T4j, T4i);					T55 = FMA(KP951056516, T4j, T4i);					T3s = FMA(KP951056516, T2S, T2P);					T2T = FNMS(KP951056516, T2S, T2P);					T2I = FNMS(KP559016994, T2H, T2G);					T4f = FMA(KP559016994, T2H, T2G);					T2D = FNMS(KP618033988, T2C, T2B);					T4c = FMA(KP618033988, T2B, T2C);					T3t = FMA(KP951056516, T2L, T2I);					T2M = FNMS(KP951056516, T2L, T2I);					T4h = FNMS(KP951056516, T4g, T4f);					T54 = FMA(KP951056516, T4g, T4f);				   }			      }			 }		    }	       }	       {		    E T4d, T58, T3w, T3H, T3r, T3k, T36, T38, T3o, T3q, T3j, T2Z, T37;		    {			 E T2E, T1s, T1u, TP, T1t;			 {			      E TM, TO, TN, T4b, T2A;			      TM = Ts + TL;			      TO = Ts - TL;			      T4b = FMA(KP559016994, T2z, T2y);			      T2A = FNMS(KP559016994, T2z, T2y);			      TN = FNMS(KP250000000, TM, T9);			      T4d = FMA(KP951056516, T4c, T4b);			      T58 = FNMS(KP951056516, T4c, T4b);			      T3w = FMA(KP951056516, T2D, T2A);			      T2E = FNMS(KP951056516, T2D, T2A);			      T1s = FMA(KP618033988, T1r, T18);			      T1u = FNMS(KP618033988, T18, T1r);			      ro[0] = T9 + TM;			      TP = FMA(KP559016994, TO, TN);			      T1t = FNMS(KP559016994, TO, TN);			 }			 {			      E T1J, T1N, T1M, T1O, T1G, T1I, T1H;			      T1G = T1E + T1F;			      T1I = T1E - T1F;			      ro[WS(os, 15)] = FMA(KP951056516, T1u, T1t);			      ro[WS(os, 10)] = FNMS(KP951056516, T1u, T1t);			      ro[WS(os, 5)] = FMA(KP951056516, T1s, TP);			      ro[WS(os, 20)] = FNMS(KP951056516, T1s, TP);			      T1H = FNMS(KP250000000, T1G, T1D);			      io[0] = T1D + T1G;			      T1J = FMA(KP559016994, T1I, T1H);			      T1N = FNMS(KP559016994, T1I, T1H);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -