📄 t1_25.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:59 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 25 -name t1_25 -include t.h *//* * This function contains 400 FP additions, 364 FP multiplications, * (or, 84 additions, 48 multiplications, 316 fused multiply/add), * 181 stack variables, 47 constants, and 100 memory accesses */#include "t.h"static void t1_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP860541664, +0.860541664367944677098261680920518816412804187); DK(KP681693190, +0.681693190061530575150324149145440022633095390); DK(KP560319534, +0.560319534973832390111614715371676131169633784); DK(KP949179823, +0.949179823508441261575555465843363271711583843); DK(KP557913902, +0.557913902031834264187699648465567037992437152); DK(KP249506682, +0.249506682107067890488084201715862638334226305); DK(KP906616052, +0.906616052148196230441134447086066874408359177); DK(KP968479752, +0.968479752739016373193524836781420152702090879); DK(KP621716863, +0.621716863012209892444754556304102309693593202); DK(KP614372930, +0.614372930789563808870829930444362096004872855); DK(KP845997307, +0.845997307939530944175097360758058292389769300); DK(KP998026728, +0.998026728428271561952336806863450553336905220); DK(KP994076283, +0.994076283785401014123185814696322018529298887); DK(KP734762448, +0.734762448793050413546343770063151342619912334); DK(KP772036680, +0.772036680810363904029489473607579825330539880); DK(KP062914667, +0.062914667253649757225485955897349402364686947); DK(KP803003575, +0.803003575438660414833440593570376004635464850); DK(KP943557151, +0.943557151597354104399655195398983005179443399); DK(KP554608978, +0.554608978404018097464974850792216217022558774); DK(KP248028675, +0.248028675328619457762448260696444630363259177); DK(KP726211448, +0.726211448929902658173535992263577167607493062); DK(KP525970792, +0.525970792408939708442463226536226366643874659); DK(KP921177326, +0.921177326965143320250447435415066029359282231); DK(KP833417178, +0.833417178328688677408962550243238843138996060); DK(KP541454447, +0.541454447536312777046285590082819509052033189); DK(KP992114701, +0.992114701314477831049793042785778521453036709); DK(KP242145790, +0.242145790282157779872542093866183953459003101); DK(KP851038619, +0.851038619207379630836264138867114231259902550); DK(KP912575812, +0.912575812670962425556968549836277086778922727); DK(KP559154169, +0.559154169276087864842202529084232643714075927); DK(KP683113946, +0.683113946453479238701949862233725244439656928); DK(KP912018591, +0.912018591466481957908415381764119056233607330); DK(KP968583161, +0.968583161128631119490168375464735813836012403); DK(KP470564281, +0.470564281212251493087595091036643380879947982); DK(KP827271945, +0.827271945972475634034355757144307982555673741); DK(KP904730450, +0.904730450839922351881287709692877908104763647); DK(KP126329378, +0.126329378446108174786050455341811215027378105); DK(KP831864738, +0.831864738706457140726048799369896829771167132); DK(KP549754652, +0.549754652192770074288023275540779861653779767); DK(KP871714437, +0.871714437527667770979999223229522602943903653); DK(KP634619297, +0.634619297544148100711287640319130485732531031); DK(KP939062505, +0.939062505817492352556001843133229685779824606); DK(KP256756360, +0.256756360367726783319498520922669048172391148); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + (mb * 48); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 48, MAKE_VOLATILE_STRIDE(rs)) { E T7I, T6Q, T6O, T7O, T7M, T7H, T6P, T6H, T7J, T7N; { E T78, T5G, T3Y, T3M, T7C, T7c, T77, T6Y, Tt, T3L, T5T, T4P, T5Q, T4W, T3G; E T2G, T5P, T4T, T5S, T4M, T65, T45, T68, T4c, T2Z, T11, T67, T49, T64, T42; E T5Y, T4r, T61, T4k, T3d, T1z, T60, T4h, T5X, T4o, T3g, T1G, T3q, T4z, T4G; E T26, T3i, T1M, T3k, T1S; { E T3u, T2e, T3E, T4O, T4V, T2E, T3w, T2k, T3y, T2q; { E T1, T6X, T3P, T7, T3W, Tq, T9, Tc, Tb, T3U, Tk, T3Q, Ta; { E T3, T6, T2, T5; T1 = ri[0]; T6X = ii[0]; T3 = ri[WS(rs, 5)]; T6 = ii[WS(rs, 5)]; T2 = W[8]; T5 = W[9]; { E Tm, Tp, To, T3V, Tn, T3O, T4, Tl; Tm = ri[WS(rs, 15)]; Tp = ii[WS(rs, 15)]; T3O = T2 * T6; T4 = T2 * T3; Tl = W[28]; To = W[29]; T3P = FNMS(T5, T3, T3O); T7 = FMA(T5, T6, T4); T3V = Tl * Tp; Tn = Tl * Tm; { E Tg, Tj, Tf, Ti, T3T, Th, T8; Tg = ri[WS(rs, 10)]; Tj = ii[WS(rs, 10)]; T3W = FNMS(To, Tm, T3V); Tq = FMA(To, Tp, Tn); Tf = W[18]; Ti = W[19]; T9 = ri[WS(rs, 20)]; Tc = ii[WS(rs, 20)]; T3T = Tf * Tj; Th = Tf * Tg; T8 = W[38]; Tb = W[39]; T3U = FNMS(Ti, Tg, T3T); Tk = FMA(Ti, Tj, Th); T3Q = T8 * Tc; Ta = T8 * T9; } } } { E T6V, T3X, T7b, Tr, T3R, Td; T6V = T3U + T3W; T3X = T3U - T3W; T7b = Tk - Tq; Tr = Tk + Tq; T3R = FNMS(Tb, T9, T3Q); Td = FMA(Tb, Tc, Ta); { E T3S, T7a, Te, T6W, T6U, Ts; T3S = T3P - T3R; T6U = T3P + T3R; T7a = T7 - Td; Te = T7 + Td; T78 = T6U - T6V; T6W = T6U + T6V; T5G = FNMS(KP618033988, T3S, T3X); T3Y = FMA(KP618033988, T3X, T3S); T3M = Te - Tr; Ts = Te + Tr; T7C = FNMS(KP618033988, T7a, T7b); T7c = FMA(KP618033988, T7b, T7a); T77 = FNMS(KP250000000, T6W, T6X); T6Y = T6W + T6X; Tt = T1 + Ts; T3L = FNMS(KP250000000, Ts, T1); } } } { E T2g, T2j, T2m, T3v, T2h, T2p, T2l, T2i, T2o, T3x, T2n; { E T2a, T2d, T29, T2c; T2a = ri[WS(rs, 3)]; T2d = ii[WS(rs, 3)]; T29 = W[4]; T2c = W[5]; { E T2t, T2w, T2z, T3A, T2u, T2C, T2y, T2v, T2B, T3t, T2b, T2s, T2f; T2t = ri[WS(rs, 13)]; T2w = ii[WS(rs, 13)]; T3t = T29 * T2d; T2b = T29 * T2a; T2s = W[24]; T2z = ri[WS(rs, 18)]; T3u = FNMS(T2c, T2a, T3t); T2e = FMA(T2c, T2d, T2b); T3A = T2s * T2w; T2u = T2s * T2t; T2C = ii[WS(rs, 18)]; T2y = W[34]; T2v = W[25]; T2B = W[35]; { E T3B, T2x, T3D, T2D, T3C, T2A; T2g = ri[WS(rs, 8)]; T3C = T2y * T2C; T2A = T2y * T2z; T3B = FNMS(T2v, T2t, T3A); T2x = FMA(T2v, T2w, T2u); T3D = FNMS(T2B, T2z, T3C); T2D = FMA(T2B, T2C, T2A); T2j = ii[WS(rs, 8)]; T2f = W[14]; T3E = T3B + T3D; T4O = T3D - T3B; T4V = T2x - T2D; T2E = T2x + T2D; } T2m = ri[WS(rs, 23)]; T3v = T2f * T2j; T2h = T2f * T2g; T2p = ii[WS(rs, 23)]; T2l = W[44]; T2i = W[15]; T2o = W[45]; } } T3x = T2l * T2p; T2n = T2l * T2m; T3w = FNMS(T2i, T2g, T3v); T2k = FMA(T2i, T2j, T2h); T3y = FNMS(T2o, T2m, T3x); T2q = FMA(T2o, T2p, T2n); } { E T2N, Tz, T2X, T44, T4b, TZ, T2P, TF, T2R, TL; { E TB, TE, TH, T2O, TC, TK, TG, TD, TJ, T2Q, TI; { E Tv, Ty, Tu, Tx; { E T4S, T4L, T4R, T4K, T4N, T3z; Tv = ri[WS(rs, 1)]; T4N = T3y - T3w; T3z = T3w + T3y; { E T4U, T2r, T3F, T2F; T4U = T2k - T2q; T2r = T2k + T2q; T5T = FNMS(KP618033988, T4N, T4O); T4P = FMA(KP618033988, T4O, T4N); T3F = T3z + T3E; T4S = T3E - T3z; T5Q = FNMS(KP618033988, T4U, T4V); T4W = FMA(KP618033988, T4V, T4U); T2F = T2r + T2E; T4L = T2E - T2r; T3G = T3u + T3F; T4R = FNMS(KP250000000, T3F, T3u); T2G = T2e + T2F; T4K = FNMS(KP250000000, T2F, T2e); Ty = ii[WS(rs, 1)]; } T5P = FMA(KP559016994, T4S, T4R); T4T = FNMS(KP559016994, T4S, T4R); T5S = FMA(KP559016994, T4L, T4K); T4M = FNMS(KP559016994, T4L, T4K); Tu = W[0]; } Tx = W[1]; { E TO, TR, TU, T2T, TP, TX, TT, TQ, TW, T2M, Tw, TN, TA; TO = ri[WS(rs, 11)]; TR = ii[WS(rs, 11)]; T2M = Tu * Ty; Tw = Tu * Tv; TN = W[20]; TU = ri[WS(rs, 16)]; T2N = FNMS(Tx, Tv, T2M); Tz = FMA(Tx, Ty, Tw); T2T = TN * TR; TP = TN * TO; TX = ii[WS(rs, 16)]; TT = W[30]; TQ = W[21]; TW = W[31]; { E T2U, TS, T2W, TY, T2V, TV; TB = ri[WS(rs, 6)]; T2V = TT * TX; TV = TT * TU; T2U = FNMS(TQ, TO, T2T); TS = FMA(TQ, TR, TP); T2W = FNMS(TW, TU, T2V); TY = FMA(TW, TX, TV); TE = ii[WS(rs, 6)]; TA = W[10]; T2X = T2U + T2W; T44 = T2W - T2U; T4b = TY - TS; TZ = TS + TY; } TH = ri[WS(rs, 21)]; T2O = TA * TE; TC = TA * TB; TK = ii[WS(rs, 21)]; TG = W[40]; TD = W[11]; TJ = W[41]; } } T2Q = TG * TK; TI = TG * TH; T2P = FNMS(TD, TB, T2O); TF = FMA(TD, TE, TC); T2R = FNMS(TJ, TH, T2Q); TL = FMA(TJ, TK, TI); } { E T31, T17, T3b, T4q, T4j, T1x, T33, T1d, T35, T1j; { E T19, T1c, T1f, T32, T1a, T1i, T1e, T1b, T1h, T34, T1g; { E T13, T16, T12, T15; { E T48, T41, T47, T40, T43, T2S; T13 = ri[WS(rs, 4)]; T43 = T2P - T2R; T2S = T2P + T2R; { E T4a, TM, T2Y, T10; T4a = TL - TF; TM = TF + TL; T65 = FMA(KP618033988, T43, T44); T45 = FNMS(KP618033988, T44, T43); T2Y = T2S + T2X; T48 = T2S - T2X; T68 = FNMS(KP618033988, T4a, T4b); T4c = FMA(KP618033988, T4b, T4a); T10 = TM + TZ; T41 = TM - TZ; T2Z = T2N + T2Y; T47 = FNMS(KP250000000, T2Y, T2N); T11 = Tz + T10; T40 = FNMS(KP250000000, T10, Tz); T16 = ii[WS(rs, 4)]; } T67 = FNMS(KP559016994, T48, T47); T49 = FMA(KP559016994, T48, T47); T64 = FNMS(KP559016994, T41, T40); T42 = FMA(KP559016994, T41, T40); T12 = W[6]; } T15 = W[7]; { E T1m, T1p, T1s, T37, T1n, T1v, T1r, T1o, T1u, T30, T14, T1l, T18; T1m = ri[WS(rs, 14)]; T1p = ii[WS(rs, 14)]; T30 = T12 * T16; T14 = T12 * T13; T1l = W[26]; T1s = ri[WS(rs, 19)]; T31 = FNMS(T15, T13, T30); T17 = FMA(T15, T16, T14); T37 = T1l * T1p; T1n = T1l * T1m; T1v = ii[WS(rs, 19)]; T1r = W[36]; T1o = W[27]; T1u = W[37]; { E T38, T1q, T3a, T1w, T39, T1t; T19 = ri[WS(rs, 9)]; T39 = T1r * T1v; T1t = T1r * T1s; T38 = FNMS(T1o, T1m, T37); T1q = FMA(T1o, T1p, T1n); T3a = FNMS(T1u, T1s, T39); T1w = FMA(T1u, T1v, T1t); T1c = ii[WS(rs, 9)]; T18 = W[16]; T3b = T38 + T3a; T4q = T3a - T38; T4j = T1w - T1q; T1x = T1q + T1w; } T1f = ri[WS(rs, 24)]; T32 = T18 * T1c; T1a = T18 * T19; T1i = ii[WS(rs, 24)]; T1e = W[46]; T1b = W[17]; T1h = W[47]; } } T34 = T1e * T1i; T1g = T1e * T1f; T33 = FNMS(T1b, T19, T32); T1d = FMA(T1b, T1c, T1a); T35 = FNMS(T1h, T1f, T34); T1j = FMA(T1h, T1i, T1g);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -