⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1bv_12.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:51:05 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 *//* * This function contains 59 FP additions, 42 FP multiplications, * (or, 41 additions, 24 multiplications, 18 fused multiply/add), * 41 stack variables, 2 constants, and 24 memory accesses */#include "t1b.h"static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     R *x;     x = ii;     for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) {	  V TI, Ti, TA, T7, Tm, TE, Tw, Tk, Tf, TB, TU, TM;	  {	       V T9, TK, Tj, TL, Te;	       {		    V T1, T4, T2, Tp, Tt, Tr;		    T1 = LD(&(x[0]), ms, &(x[0]));		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));		    Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));		    Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));		    Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));		    {			 V T5, T3, Tq, Tu, Ts, Td, Tb, T8, Tc, Ta;			 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));			 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));			 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));			 T5 = BYTW(&(W[TWVL * 14]), T4);			 T3 = BYTW(&(W[TWVL * 6]), T2);			 Tq = BYTW(&(W[TWVL * 16]), Tp);			 Tu = BYTW(&(W[TWVL * 8]), Tt);			 Ts = BYTW(&(W[0]), Tr);			 T9 = BYTW(&(W[TWVL * 10]), T8);			 Td = BYTW(&(W[TWVL * 2]), Tc);			 Tb = BYTW(&(W[TWVL * 18]), Ta);			 {			      V Th, T6, Tl, Tv;			      Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));			      TK = VSUB(T3, T5);			      T6 = VADD(T3, T5);			      Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));			      Tv = VADD(Ts, Tu);			      TI = VSUB(Tu, Ts);			      Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));			      TL = VSUB(Tb, Td);			      Te = VADD(Tb, Td);			      Ti = BYTW(&(W[TWVL * 4]), Th);			      TA = VFNMS(LDK(KP500000000), T6, T1);			      T7 = VADD(T1, T6);			      Tm = BYTW(&(W[TWVL * 20]), Tl);			      TE = VFNMS(LDK(KP500000000), Tv, Tq);			      Tw = VADD(Tq, Tv);			 }		    }	       }	       Tk = BYTW(&(W[TWVL * 12]), Tj);	       Tf = VADD(T9, Te);	       TB = VFNMS(LDK(KP500000000), Te, T9);	       TU = VSUB(TK, TL);	       TM = VADD(TK, TL);	  }	  {	       V Tn, TH, TC, TQ, Ty, Tg;	       Tn = VADD(Tk, Tm);	       TH = VSUB(Tk, Tm);	       TC = VADD(TA, TB);	       TQ = VSUB(TA, TB);	       Ty = VADD(T7, Tf);	       Tg = VSUB(T7, Tf);	       {		    V To, TD, TJ, TR;		    To = VADD(Ti, Tn);		    TD = VFNMS(LDK(KP500000000), Tn, Ti);		    TJ = VSUB(TH, TI);		    TR = VADD(TH, TI);		    {			 V TP, TN, TW, TS, TO, TG, TX, TV;			 {			      V Tz, Tx, TF, TT;			      Tz = VADD(To, Tw);			      Tx = VSUB(To, Tw);			      TF = VADD(TD, TE);			      TT = VSUB(TD, TE);			      TP = VMUL(LDK(KP866025403), VADD(TM, TJ));			      TN = VMUL(LDK(KP866025403), VSUB(TJ, TM));			      TW = VFMA(LDK(KP866025403), TR, TQ);			      TS = VFNMS(LDK(KP866025403), TR, TQ);			      ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));			      ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));			      ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)]));			      ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)]));			      TO = VADD(TC, TF);			      TG = VSUB(TC, TF);			      TX = VFNMS(LDK(KP866025403), TU, TT);			      TV = VFMA(LDK(KP866025403), TU, TT);			 }			 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));			 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));			 ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0]));			 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0]));			 ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)]));			 ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)]));			 ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));			 ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));		    }	       }	  }     }}static const tw_instr twinstr[] = {     VTW(0, 1),     VTW(0, 2),     VTW(0, 3),     VTW(0, 4),     VTW(0, 5),     VTW(0, 6),     VTW(0, 7),     VTW(0, 8),     VTW(0, 9),     VTW(0, 10),     VTW(0, 11),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 12, "t1bv_12", twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };void X(codelet_t1bv_12) (planner *p) {     X(kdft_dit_register) (p, t1bv_12, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 *//* * This function contains 59 FP additions, 30 FP multiplications, * (or, 55 additions, 26 multiplications, 4 fused multiply/add), * 28 stack variables, 2 constants, and 24 memory accesses */#include "t1b.h"static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     R *x;     x = ii;     for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) {	  V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty;	  V Tz;	  {	       V T5, T3, T4, T2;	       T1 = LD(&(x[0]), ms, &(x[0]));	       T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));	       T5 = BYTW(&(W[TWVL * 14]), T4);	       T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));	       T3 = BYTW(&(W[TWVL * 6]), T2);	       Tt = VSUB(T3, T5);	       T6 = VADD(T3, T5);	       T7 = VFNMS(LDK(KP500000000), T6, T1);	  }	  {	       V Tn, Tp, Tm, TA, To;	       Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));	       Tn = BYTW(&(W[0]), Tm);	       TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));	       TB = BYTW(&(W[TWVL * 16]), TA);	       To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));	       Tp = BYTW(&(W[TWVL * 8]), To);	       Tq = VSUB(Tn, Tp);	       TC = VADD(Tn, Tp);	       TD = VFNMS(LDK(KP500000000), TC, TB);	  }	  {	       V Td, Tb, T8, Tc, Ta;	       T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));	       T9 = BYTW(&(W[TWVL * 10]), T8);	       Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));	       Td = BYTW(&(W[TWVL * 2]), Tc);	       Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));	       Tb = BYTW(&(W[TWVL * 18]), Ta);	       Tu = VSUB(Tb, Td);	       Te = VADD(Tb, Td);	       Tf = VFNMS(LDK(KP500000000), Te, T9);	  }	  {	       V Ti, Tk, Th, Tw, Tj;	       Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));	       Ti = BYTW(&(W[TWVL * 12]), Th);	       Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));	       Tx = BYTW(&(W[TWVL * 4]), Tw);	       Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));	       Tk = BYTW(&(W[TWVL * 20]), Tj);	       Tl = VSUB(Ti, Tk);	       Ty = VADD(Ti, Tk);	       Tz = VFNMS(LDK(KP500000000), Ty, Tx);	  }	  {	       V Ts, TG, TF, TH;	       {		    V Tg, Tr, Tv, TE;		    Tg = VSUB(T7, Tf);		    Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq));		    Ts = VSUB(Tg, Tr);		    TG = VADD(Tg, Tr);		    Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu));		    TE = VSUB(Tz, TD);		    TF = VBYI(VADD(Tv, TE));		    TH = VBYI(VSUB(TE, Tv));	       }	       ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)]));	       ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));	       ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)]));	       ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)]));	  }	  {	       V TS, TW, TV, TX;	       {		    V TQ, TR, TT, TU;		    TQ = VADD(T1, T6);		    TR = VADD(T9, Te);		    TS = VSUB(TQ, TR);		    TW = VADD(TQ, TR);		    TT = VADD(Tx, Ty);		    TU = VADD(TB, TC);		    TV = VBYI(VSUB(TT, TU));		    TX = VADD(TT, TU);	       }	       ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)]));	       ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));	       ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)]));	       ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));	  }	  {	       V TK, TO, TN, TP;	       {		    V TI, TJ, TL, TM;		    TI = VADD(Tl, Tq);		    TJ = VADD(Tt, Tu);		    TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));		    TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));		    TL = VADD(T7, Tf);		    TM = VADD(Tz, TD);		    TN = VSUB(TL, TM);		    TP = VADD(TL, TM);	       }	       ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0]));	       ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0]));	       ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0]));	       ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));	  }     }}static const tw_instr twinstr[] = {     VTW(0, 1),     VTW(0, 2),     VTW(0, 3),     VTW(0, 4),     VTW(0, 5),     VTW(0, 6),     VTW(0, 7),     VTW(0, 8),     VTW(0, 9),     VTW(0, 10),     VTW(0, 11),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 12, "t1bv_12", twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };void X(codelet_t1bv_12) (planner *p) {     X(kdft_dit_register) (p, t1bv_12, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -