📄 bspline.cpp
字号:
/*********************************************************************
Simple b-spline curve algorithm
Copyright 1994 by Keith Vertanen (vertankd@cda.mrs.umn.edu)
Released to the public domain (your mileage may vary)
**********************************************************************/
#include <graphics.h>
#include <stdlib.h>
struct point {
double x;
double y;
double z;
};
int set_graph(void);
void compute_intervals(int *u, int n, int t);
double blend(int k, int t, int *u, double v);
void compute_point(int *u, int n, int t, double v, point *control,
point *output);
void bspline(int n, int t, point *control, point *output, int num_output)
/*********************************************************************
Parameters:
n - the number of control points minus 1
t - the degree of the polynomial plus 1
control - control point array made up of point stucture
output - array in which the calculate spline points are to be put
num_output - how many points on the spline are to be calculated
Pre-conditions:
n+2>t (no curve results if n+2<=t)
control array contains the number of points specified by n
output array is the proper size to hold num_output point structures
**********************************************************************/
{
int *u;
double increment,interval;
point calcxyz;
int output_index;
u=new int[n+t+1];
compute_intervals(u, n, t);
increment=(double) (n-t+2)/(num_output-1); // how much parameter goes up each time
interval=0;
for (output_index=0; output_index<num_output-1; output_index++)
{
compute_point(u, n, t, interval, control, &calcxyz);
output[output_index].x = calcxyz.x;
output[output_index].y = calcxyz.y;
output[output_index].z = calcxyz.z;
interval=interval+increment; // increment our parameter
}
output[num_output-1].x=control[n].x; // put in the last point
output[num_output-1].y=control[n].y;
output[num_output-1].z=control[n].z;
delete u;
}
void main()
{
int *u;
int n,t,i;
n=7; // number of control points = n+1
t=4; // degree of polynomial = t-1
point *pts; // allocate our control point array
pts=new point[n+1];
/*
randomize();
for (i=0; i<=n; i++) // assign the control points randomly
{
(pts[i].x)=random(100)+(i*600/n);
(pts[i].y)=random(500);
(pts[i].z)=random(500);
}
*/
pts[0].x=10; pts[0].y=100; pts[0].z=0;
pts[1].x=200; pts[1].y=100; pts[1].z=0;
pts[2].x=345; pts[2].y=300; pts[2].z=0;
pts[3].x=400; pts[3].y=250; pts[3].z=0;
pts[4].x=500; pts[4].y=550; pts[4].z=0;
pts[5].x=550; pts[5].y=150; pts[5].z=0;
pts[6].x=570; pts[6].y=50; pts[6].z=0;
pts[7].x=600; pts[7].y=100; pts[7].z=0;
int resolution = 100; // how many points our in our output array
point *out_pts;
out_pts = new point[resolution];
bspline(n, t, pts, out_pts, resolution);
if (set_graph())
{
setcolor(69);
for (i=0; i<=n; i++)
circle(pts[i].x,pts[i].y,2); // put circles at control points
circle(pts[0].x,pts[0].y,0); // drop the pen down at first control point
for (i=0; i<resolution; i++)
{
setcolor(i); // have a little fun with the colors
putpixel(out_pts[i].x,out_pts[i].y,WHITE);
}
}
}
double blend(int k, int t, int *u, double v) // calculate the blending value
{
double value;
if (t==1) // base case for the recursion
{
if ((u[k]<=v) && (v<u[k+1]))
value=1;
else
value=0;
}
else
{
if ((u[k+t-1]==u[k]) && (u[k+t]==u[k+1])) // check for divide by zero
value = 0;
else
if (u[k+t-1]==u[k]) // if a term's denominator is zero,use just the other
value = (u[k+t] - v) / (u[k+t] - u[k+1]) * blend(k+1, t-1, u, v);
else
if (u[k+t]==u[k+1])
value = (v - u[k]) / (u[k+t-1] - u[k]) * blend(k, t-1, u, v);
else
value = (v - u[k]) / (u[k+t-1] - u[k]) * blend(k, t-1, u, v) +
(u[k+t] - v) / (u[k+t] - u[k+1]) * blend(k+1, t-1, u, v);
}
return value;
}
void compute_intervals(int *u, int n, int t) // figure out the knots
{
int j;
for (j=0; j<=n+t; j++)
{
if (j<t)
u[j]=0;
else
if ((t<=j) && (j<=n))
u[j]=j-t+1;
else
if (j>n)
u[j]=n-t+2; // if n-t=-2 then we're screwed, everything goes to 0
}
}
void compute_point(int *u, int n, int t, double v, point *control,
point *output)
{
int k;
double temp;
// initialize the variables that will hold our outputted point
output->x=0;
output->y=0;
output->z=0;
for (k=0; k<=n; k++)
{
temp = blend(k,t,u,v); // same blend is used for each dimension coordinate
output->x = output->x + (control[k]).x * temp;
output->y = output->y + (control[k]).y * temp;
output->z = output->z + (control[k]).z * temp;
}
}
int set_graph(void)
{
int graphdriver = DETECT, graphmode, error_code;
//Initialize graphics system; must be EGA or VGA
initgraph(&graphdriver, &graphmode, "c:\\borlandc\\bgi");
error_code = graphresult();
if (error_code != grOk)
return(-1); // No graphics hardware found
if ((graphdriver != EGA) && (graphdriver != VGA))
{
closegraph();
return 0;
}
return(1); // Graphics OK, so return "true"
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -