📄 22.c
字号:
//#include "stdafx.h"
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define random(x)(rand()%x)
#define randomize() srand(time(NULL))
// #pragma argsused
void clearwc(void) ; //清除网络权值变化量wc
void clearbc(void) ; //清除网络阀值变化量bc
void netout(int m,int n) ; //计算网络隐含层和输出层的输出
void calculdiffer(void) ; //计算NN网络单个样本误差
void calculd(int m,int n) ; //计算网络的反向传播误差
void calculwc(int m,int n) ; //计算网络权值的调整量
void calculbc(int m,int n) ; //计算网络阀值的调整量
void calculis(void) ; //计算NN网络全体样本误差
void initialb(void) ; //初始化NN网络阀值
void trainNN(void); //训练NN网络
void initialw(void); //初始化NN网络权值W
void changew(int m,int n) ; //调整网络权值
void changeb(int m,int n) ; //调整网络阀值
// double o[4][10] ;
/* int main()
{
char ch;
double result;
int m,test[4]; */
// float test[4];
int main()
{
double result;
//double o[3][3] ;
double o[4][10] ;
int m;
float test[3];
char ch='y';
FILE *fp1;
FILE *fp4;
FILE *fp5;
fp1=fopen("F:\\BP\\result.txt","w");
// fp4=fopen("F:\\BP\\is.txt","w");
fp5=fopen("F:\\BP\\复件 目标样本.txt","r");
for(m=1;m<=3;m++)
{test[m]=0;}
/*FILE *fp2;
FILE *fp3;
// FILE *fp4;
fp1=fopen("F:\\BP\\result.txt","w");
fp2=fopen("F:\\BP\\yin.txt","w");
fp3=fopen("F:\\BP\\shu.txt","w");
// fp4=fopen("F:\\BP\\is.txt","w"); */
//cout<<"Please wait for the train of NN:"<<endl;
trainNN();
//out<<"Now,this modular network can work for you."<<endl;
while(ch=='y' || ch=='Y')
{
//cout<<"Please input data to be tested."<<endl;
for (m=1;m<=3;m++)
{
//scanf("%f",&test[m]);
fscanf(fp5,"%f",&test[m]);
}
//printf("o[3][1]=%f\n",o[3][1]);
//cin>>test[m];
ch=getchar();
o[1][1]=test[1];
o[1][2]=test[2];
o[1][3]=test[3];
netout(8,1);
result=o[3][1];
//printf("o[3][1]=%f\n",o[3][1]);
//getch();
fprintf(fp1,"%f \n",result);
//printf("Final result is %f.\n",result);
// printf("Still test?[Yes] or [No]\n");
//ch=getchar();
fclose(fp1);
fclose(fp4);
fclose(fp5);
}
return 0;
}
float Aa=30.0;
float B=10.0;
float MAX=500; //最大训练次数
float COEF=0.035; //网络的学习效率
float BCOEF=0.01;//网络的阀值调整效率
float ERROR=0.002 ; // 网络训练中的允许误差
float ACCURACY=0.0005;//网络要求精度
double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];
double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差
double is; //全体样本均方差
int count,a;
double sample[41][4]={
{0,0,0,0},
{5,1,4,19.020},
{5,3,3,14.150},
{5,5,2,14.360},
{5,3,3,14.150},
{5,3,2,15.390},
{5,3,2,15.390},
{5,5,1,19.680},
{5,1,2,21.060},
{5,3,3,14.150},
{5,5,4,12.680},
{5,5,2,14.360},
{5,1,3,19.610},
{5,3,4,13.650},
{5,5,5,12.430},
{5,1,4,19.020},
{5,1,4,19.020},
{5,3,5,13.390},
{5,5,4,12.680},
{5,1,3,19.610},
{5,3,2,15.390},
{1,3,1,11.110},
{1,5,2,6.521},
{1,1,3,10.190},
{1,3,4,6.043},
{1,5,5,5.242},
{1,5,3,5.724},
{1,1,4,9.766},
{1,3,5,5.870},
{1,5,4,5.406},
{1,1,3,10.190},
{1,1,5,9.545},
{1,3,4,6.043},
{1,5,3,5.724},
{1,1,2,11.250},
{1,3,1,11.110},
{1,3,3,6.380},
{1,5,2,6.521},
{1,1,1,16.000},
{1,3,2,7.219},
{1,5,3,5.724}
};
/*训练网络*/
void trainNN(void)
{
long int time;
int i,x[4];
FILE *fp4;
fp4=fopen("F:\\BP\\is.txt","w");
initialw();
initialb();
for (time=1;time<=MAX;time++)
{
count=0;
while(count<=40)
{
o[1][1]=sample[count][0];
o[1][2]=sample[count][1];
o[1][3]=sample[count][2];
count=count+1;
clearwc();
clearbc();
netout(8,1);
calculdiffer();
while(differ>ERROR)
{
calculd(8,1);
calculwc(8,1);
calculbc(8,1);
changew(8,1);
changeb(8,1);
netout(8,1);
calculdiffer();
}
}
//printf("This is %d times training NN...\n",time);
calculis();
fprintf(fp4,"%f \n",is);
// printf("is==%f\n",is);
if (is<ACCURACY) break;
}
}
/*初始化网络权值W*/
void initialw(void)
{
int i,j,k;
double weight, x ;
for (i=0;i<4;i++)
for (j=0;j<10;j++)
for (k=0;k<10;k++)
{
randomize();
x=100+random(400);
weight=x/5000.00;
w[i][j][k]=weight;
// printf("i=%d,j=%d,k=%d,w[i][j][k]=%f\n",i,j,k,w[i][j][k]);
}
}
/*初始化网络阀值*/
void initialb(void)
{
int i,j,x,k;
double fazhi;
for (i=0;i<4;i++)
for (j=0;j<10;j++)
{
randomize();
x=100+random(400);
/* for (int k=0;k<12;k++)
{
x=100+random(400);
} */
fazhi=x/50000.00;
b[i][j]=fazhi;
//printf("i=%d,j=%d,b[i][j]=%f\n",i,j,b[i][j]);
}
}
/*清除网络权值变化量wc*/
void clearwc(void)
{ int i,j,k;
for ( i=0;i<4;i++)
for ( j=0;j<10;j++)
for ( k=0;k<10;k++)
wc[i][j][k]=0.00;
//printf("i=%d,j=%d,k=%d,wc[i][j][k]=%f\n",i,j,k,wc[i][j][k]);
}
/*清除网络阀值变化量*/
void clearbc(void)
{ int i,j;
for ( i=0;i<4;i++)
for ( j=0;j<10;j++)
bc[i][j]=0.00;
}
/*计算NN网络隐含层和输出层的输出 */
void netout(int m,int n)
{
int i,j,k;
/*FILE *fp2;
FILE *fp3;
fp2=fopen("F:\\BP\\yin.txt","w");
fp3=fopen("F:\\BP\\shu.txt","w"); */
//隐含层各节点的的输出
for (j=1,i=2;j<=m;j++) //m为隐含层节点个数
{
netin[i][j]=0.0;
for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量
netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
netin[i][j]=netin[i][j]-b[i][j];
o[i][j]=Aa/(1+exp(-netin[i][j]/B));
//fprintf(fp2,"%f,%f,%f\n",i,j,o[i][j]);
// fprintf(fp2,"%f\n",o[i][j]);
}
//printf("o[3][1]=%f\n",o[3][1]);
//getch();
//输出层各节点的输出
for (j=1,i=3;j<=n;j++)
{
netin[i][j]=0.0;
for (k=1;k<=m;k++)
netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
netin[i][j]=netin[i][j]-b[i][j];
o[i][j]=Aa/(1+exp(-netin[i][j]/B)) ;
// fprintf(fp3,"%f\n",o[i][j]);
// fprintf(fp3,"%f %f %f\n",i,j,o[i][j]);
}
// printf("o[3][1]=%f\n",o[3][1]);
//getch();
}
/*计算网络单个样本误差*/
void calculdiffer(void)
{
a=count-1;
differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);
}
/*计算NN网络的反向传播误差*/
void calculd(int m,int n)
{
int i,j,k;
double t;
a=count-1;
d[3][1]=(o[3][1]-sample[a][3])*(Aa/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);
//隐含层的误差
for (j=1,i=2;j<=m;j++)
{
t=0.00;
for (k=1;k<=n;k++)
t=t+w[i+1][j][k]*d[i+1][k];
d[i][j]=t*(Aa/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);
}
}
/*计算网络权值W的调整量*/
void calculwc(int m,int n)
{
int i,j,k;
// 输出层(第三层)与隐含层(第二层)之间的连接权值的调整
for (i=1,k=3;i<=m;i++)
{
for (j=1;j<=n;j++)
{
wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
}
// printf("\n");
//printf("w[3][%d][%d]=%f\n",wc[3][i][j]);
}
//隐含层与输入层之间的连接权值的调整
for (i=1,k=2;i<=m;i++)
{
for (j=1;j<=m;j++)
{
wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
}
//printf("\n");
//printf("w[2][%d][%d]=%f\n",wc[2][i][j]);
}
}
/*计算网络阀值的调整量*/
void calculbc(int m,int n)
{
int j;
for (j=1;j<=m;j++)
{
bc[2][j]=BCOEF*d[2][j];
}
for (j=1;j<=n;j++)
{
bc[3][j]=BCOEF*d[3][j];
}
}
/*调整网络权值*/
void changew(int m,int n)
{
int i,j;
for (i=1;i<=3;i++)
for (j=1;j<=m;j++)
{
w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];
//为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9
// printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);
}
for (i=1;i<=m;i++)
for (j=1;j<=n;j++)
{
w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];
// printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);
}
}
/*调整网络阀值*/
void changeb(int m,int n)
{
int j;
for (j=1;j<=m;j++)
b[2][j]=b[2][j]+bc[2][j];
for (j=1;j<=n;j++)
b[3][j]=b[3][j]+bc[3][j];
}
/*全体样本均方差*/
void calculis(void)
{
int i;
is=0.0;
for (i=0;i<=19;i++)
{
o[1][1]=sample[i][0];
o[1][2]=sample[i][1];
o[1][3]=sample[i][2];
netout(8,1);
is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);
}
is=is/20000000;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -