📄 rijndael.cpp
字号:
//Rijndael.cpp
#include "stdafx.h"
#include <iostream>
#include <cstring>
#include <exception>
#include "Rijndael.h"
#include "Tables.h"
//Error Messages
char const* CRijndael::sm_szErrorMsg1 = "Object not Initialized";
char const* CRijndael::sm_szErrorMsg2 = "Data not multiple of Block Size";
//CONSTRUCTOR
CRijndael::CRijndael() : encryptKeys(NULL), decryptKeys(NULL), m_bKeyInit(false)
{
}
//DESTRUCTOR
CRijndael::~CRijndael()
{
int i;
for(i=0; i<=10; i++)
delete [] encryptKeys[i];
delete [] encryptKeys;
for(i=0; i<=10; i++)
delete [] decryptKeys[i];
delete [] decryptKeys;
}
//Expand a user-supplied key material into a session key.
// key - The 128 bit user-key to use.
// keylength - 16 bytes
// blockSize - The block size in bytes of this Rijndael (16 bytes).
void CRijndael::MakeKey(char const* key)
{
int keylength = 16;
int blockSize = 16;
if(key == NULL)
throw exception("Empty key");
m_keylength = keylength;
m_blockSize = blockSize;
int i;
if(encryptKeys != NULL)
{
for(i=0; i<=10; i++)
delete [] encryptKeys[i];
delete [] encryptKeys;
}
if(decryptKeys != NULL)
{
for(i=0; i<=10; i++)
delete [] decryptKeys[i];
delete [] decryptKeys;
}
int BC = m_blockSize / 4;
int j;
encryptKeys = new int*[11]; //Encryption round keys
for(i=0; i<=10; i++)
{
encryptKeys[i] = new int[BC];
for(j=0; j<BC; j++)
encryptKeys[i][j] = 0;
}
decryptKeys = new int*[11]; //Decryption round keys
for(i=0; i<=10; i++)
{
decryptKeys[i] = new int[BC];
for(j=0; j<BC; j++)
decryptKeys[i][j] = 0;
}
int ROUND_KEY_COUNT = (11) * BC;
int KC = m_keylength/4;
int* tk = new int[KC];
//Copy user material bytes into temporary ints
int* pi = tk;
char const* pc = key;
for(i=0; i<KC; i++)
{
*pi = (unsigned char)*(pc++) << 24;
*pi |= (unsigned char)*(pc++) << 16;
*pi |= (unsigned char)*(pc++) << 8;
*(pi++) |= (unsigned char)*(pc++);
}
//Copy values into round key arrays
int t = 0;
for(j=0; (j<KC)&&(t<ROUND_KEY_COUNT); j++,t++)
{
encryptKeys[t/BC][t%BC] = tk[j];
decryptKeys[10 - (t/BC)][t%BC] = tk[j];
}
int tt, rconpointer = 0;
while(t < ROUND_KEY_COUNT)
{
//Extrapolate using phi (the round key evolution function)
tt = tk[KC-1];
tk[0] ^= (SBox[(tt >> 16) & 0xFF] & 0xFF) << 24 ^
(SBox[(tt >> 8) & 0xFF] & 0xFF) << 16 ^
(SBox[ tt & 0xFF] & 0xFF) << 8 ^
(SBox[(tt >> 24) & 0xFF] & 0xFF) ^
(sm_rcon[rconpointer++] & 0xFF) << 24;
if(KC != 8)
for(i=1, j=0; i<KC;)
tk[i++] ^= tk[j++];
else
{
for(i=1, j=0; i<KC/2; )
tk[i++] ^= tk[j++];
tt = tk[KC/2-1];
tk[KC/2] ^= (SBox[ tt & 0xFF] & 0xFF) ^
(SBox[(tt >> 8) & 0xFF] & 0xFF) << 8 ^
(SBox[(tt >> 16) & 0xFF] & 0xFF) << 16 ^
(SBox[(tt >> 24) & 0xFF] & 0xFF) << 24;
for(j = KC/2, i=j+1; i<KC; )
tk[i++] ^= tk[j++];
}
//Copy values into round key arrays
for(j=0; (j<KC) && (t<ROUND_KEY_COUNT); j++, t++)
{
encryptKeys[t/BC][t%BC] = tk[j];
decryptKeys[10 - (t/BC)][t%BC] = tk[j];
}
}
delete [] tk;
//Inverse MixColumn where needed
for(int r=1; r<10; r++)
for(j=0; j<BC; j++)
{
tt = decryptKeys[r][j];
decryptKeys[r][j] = sm_U1[(tt >> 24) & 0xFF] ^
sm_U2[(tt >> 16) & 0xFF] ^
sm_U3[(tt >> 8) & 0xFF] ^
sm_U4[tt & 0xFF];
}
m_bKeyInit = true;
}
//Convenience method to encrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The plaintext
// result - The ciphertext generated from a plaintext using the key
void CRijndael::DefEncryptBlock(char const* in, char* result)
{
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
int* Ker = encryptKeys[0];
//cout<<"Entered DefEncryptBlock \n";
int t0 = ((unsigned char)*(in++) << 24);
t0 |= ((unsigned char)*(in++) << 16);
t0 |= ((unsigned char)*(in++) << 8);
(t0 |= (unsigned char)*(in++)) ^= Ker[0];
int t1 = ((unsigned char)*(in++) << 24);
t1 |= ((unsigned char)*(in++) << 16);
t1 |= ((unsigned char)*(in++) << 8);
(t1 |= (unsigned char)*(in++)) ^= Ker[1];
int t2 = ((unsigned char)*(in++) << 24);
t2 |= ((unsigned char)*(in++) << 16);
t2 |= ((unsigned char)*(in++) << 8);
(t2 |= (unsigned char)*(in++)) ^= Ker[2];
int t3 = ((unsigned char)*(in++) << 24);
t3 |= ((unsigned char)*(in++) << 16);
t3 |= ((unsigned char)*(in++) << 8);
(t3 |= (unsigned char)*(in++)) ^= Ker[3];
int a0, a1, a2, a3;
//Apply Round Transforms
for (int r = 1; r < 10; r++)
{
Ker = encryptKeys[r];
a0 = (sm_T1[(t0 >> 24) & 0xFF] ^
sm_T2[(t1 >> 16) & 0xFF] ^
sm_T3[(t2 >> 8) & 0xFF] ^
sm_T4[t3 & 0xFF]) ^ Ker[0];
a1 = (sm_T1[(t1 >> 24) & 0xFF] ^
sm_T2[(t2 >> 16) & 0xFF] ^
sm_T3[(t3 >> 8) & 0xFF] ^
sm_T4[t0 & 0xFF]) ^ Ker[1];
a2 = (sm_T1[(t2 >> 24) & 0xFF] ^
sm_T2[(t3 >> 16) & 0xFF] ^
sm_T3[(t0 >> 8) & 0xFF] ^
sm_T4[t1 & 0xFF]) ^ Ker[2];
a3 = (sm_T1[(t3 >> 24) & 0xFF] ^
sm_T2[(t0 >> 16) & 0xFF] ^
sm_T3[(t1 >> 8) & 0xFF] ^
sm_T4[t2 & 0xFF]) ^ Ker[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
}
//Last Round is special
Ker = encryptKeys[10];
int tt = Ker[0];
result[0] = SBox[(t0 >> 24) & 0xFF] ^ (tt >> 24);
result[1] = SBox[(t1 >> 16) & 0xFF] ^ (tt >> 16);
result[2] = SBox[(t2 >> 8) & 0xFF] ^ (tt >> 8);
result[3] = SBox[t3 & 0xFF] ^ tt;
tt = Ker[1];
result[4] = SBox[(t1 >> 24) & 0xFF] ^ (tt >> 24);
result[5] = SBox[(t2 >> 16) & 0xFF] ^ (tt >> 16);
result[6] = SBox[(t3 >> 8) & 0xFF] ^ (tt >> 8);
result[7] = SBox[t0 & 0xFF] ^ tt;
tt = Ker[2];
result[8] = SBox[(t2 >> 24) & 0xFF] ^ (tt >> 24);
result[9] = SBox[(t3 >> 16) & 0xFF] ^ (tt >> 16);
result[10] = SBox[(t0 >> 8) & 0xFF] ^ (tt >> 8);
result[11] = SBox[t1 & 0xFF] ^ tt;
tt = Ker[3];
result[12] = SBox[(t3 >> 24) & 0xFF] ^ (tt >> 24);
result[13] = SBox[(t0 >> 16) & 0xFF] ^ (tt >> 16);
result[14] = SBox[(t1 >> 8) & 0xFF] ^ (tt >> 8);
result[15] = SBox[t2 & 0xFF] ^ tt;
/*for(int i=0; i<=15; i++)
{
cout<<"The result["<<i<<"] ="<<(int)result[i]<<endl;
}*/
}
//Convenience method to decrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The ciphertext.
// result - The plaintext generated from a ciphertext using the session key.
void CRijndael::DefDecryptBlock(char const* in, char* result)
{
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
int* Kdr = decryptKeys[0];
int t0 = ((unsigned char)*(in++) << 24);
t0 = t0 | ((unsigned char)*(in++) << 16);
t0 |= ((unsigned char)*(in++) << 8);
(t0 |= (unsigned char)*(in++)) ^= Kdr[0];
int t1 = ((unsigned char)*(in++) << 24);
t1 |= ((unsigned char)*(in++) << 16);
t1 |= ((unsigned char)*(in++) << 8);
(t1 |= (unsigned char)*(in++)) ^= Kdr[1];
int t2 = ((unsigned char)*(in++) << 24);
t2 |= ((unsigned char)*(in++) << 16);
t2 |= ((unsigned char)*(in++) << 8);
(t2 |= (unsigned char)*(in++)) ^= Kdr[2];
int t3 = ((unsigned char)*(in++) << 24);
t3 |= ((unsigned char)*(in++) << 16);
t3 |= ((unsigned char)*(in++) << 8);
(t3 |= (unsigned char)*(in++)) ^= Kdr[3];
int a0, a1, a2, a3;
for(int r = 1; r < 10 ; r++) // apply round transforms
{
Kdr = decryptKeys[r];
a0 = (sm_T5[(t0 >> 24) & 0xFF] ^
sm_T6[(t3 >> 16) & 0xFF] ^
sm_T7[(t2 >> 8) & 0xFF] ^
sm_T8[ t1 & 0xFF] ) ^ Kdr[0];
a1 = (sm_T5[(t1 >> 24) & 0xFF] ^
sm_T6[(t0 >> 16) & 0xFF] ^
sm_T7[(t3 >> 8) & 0xFF] ^
sm_T8[ t2 & 0xFF] ) ^ Kdr[1];
a2 = (sm_T5[(t2 >> 24) & 0xFF] ^
sm_T6[(t1 >> 16) & 0xFF] ^
sm_T7[(t0 >> 8) & 0xFF] ^
sm_T8[ t3 & 0xFF] ) ^ Kdr[2];
a3 = (sm_T5[(t3 >> 24) & 0xFF] ^
sm_T6[(t2 >> 16) & 0xFF] ^
sm_T7[(t1 >> 8) & 0xFF] ^
sm_T8[ t0 & 0xFF] ) ^ Kdr[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
}
//Last Round is special
Kdr = decryptKeys[10];
int tt = Kdr[0];
result[ 0] = SBoxInv[(t0 >> 24) & 0xFF] ^ (tt >> 24);
result[ 1] = SBoxInv[(t3 >> 16) & 0xFF] ^ (tt >> 16);
result[ 2] = SBoxInv[(t2 >> 8) & 0xFF] ^ (tt >> 8);
result[ 3] = SBoxInv[ t1 & 0xFF] ^ tt;
tt = Kdr[1];
result[ 4] = SBoxInv[(t1 >> 24) & 0xFF] ^ (tt >> 24);
result[ 5] = SBoxInv[(t0 >> 16) & 0xFF] ^ (tt >> 16);
result[ 6] = SBoxInv[(t3 >> 8) & 0xFF] ^ (tt >> 8);
result[ 7] = SBoxInv[ t2 & 0xFF] ^ tt;
tt = Kdr[2];
result[ 8] = SBoxInv[(t2 >> 24) & 0xFF] ^ (tt >> 24);
result[ 9] = SBoxInv[(t1 >> 16) & 0xFF] ^ (tt >> 16);
result[10] = SBoxInv[(t0 >> 8) & 0xFF] ^ (tt >> 8);
result[11] = SBoxInv[ t3 & 0xFF] ^ tt;
tt = Kdr[3];
result[12] = SBoxInv[(t3 >> 24) & 0xFF] ^ (tt >> 24);
result[13] = SBoxInv[(t2 >> 16) & 0xFF] ^ (tt >> 16);
result[14] = SBoxInv[(t1 >> 8) & 0xFF] ^ (tt >> 8);
result[15] = SBoxInv[ t0 & 0xFF] ^ tt;
}
//Encrypt exactly one block of plaintext.
// in - The plaintext.
// result - The ciphertext generated from a plaintext using the key.
void CRijndael::EncryptBlock(char const* in, char* result)
{
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
if(DEFAULT_BLOCK_SIZE == m_blockSize)
{
cout<<"default block size :"<< m_blockSize;
DefEncryptBlock(in, result);
return;
}
int BC = m_blockSize / 4;
int SC = (BC == 4) ? 0 : (BC == 6 ? 1 : 2);
int s1 = sm_shifts[SC][1][0];
int s2 = sm_shifts[SC][2][0];
int s3 = sm_shifts[SC][3][0];
//Temporary Work Arrays
int* a = new int[BC];
int* t = new int[BC];
int i;
int tt;
int* pi = t;
for(i=0; i<BC; i++)
{
*pi = ((unsigned char)*(in++) << 24);
*pi |= ((unsigned char)*(in++) << 16);
*pi |= ((unsigned char)*(in++) << 8);
(*(pi++) |= (unsigned char)*(in++)) ^= encryptKeys[0][i];
}
//Apply Round Transforms
for(int r=1; r<10; r++)
{
for(i=0; i<BC; i++)
a[i] = (sm_T1[(t[i] >> 24) & 0xFF] ^
sm_T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
sm_T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
sm_T4[ t[(i + s3) % BC] & 0xFF] ) ^ encryptKeys[r][i];
memcpy(t, a, 4*BC);
}
int j;
//Last Round is Special
for(i=0,j=0; i<BC; i++)
{
tt = encryptKeys[10][i];
//cout<<"The result["<<j<<"] ="<<result[j];
result[j++] = SBox[(t[i] >> 24) & 0xFF] ^ (tt >> 24);
//cout<<"The result["<<j<<"] ="<<result[j];
result[j++] = SBox[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16);
//cout<<"The result["<<j<<"] ="<<result[j];
result[j++] = SBox[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8);
//cout<<"The result["<<j<<"] ="<<result[j];
result[j++] = SBox[ t[(i + s3) % BC] & 0xFF] ^ tt;
//cout<<"The result["<<j<<"] ="<<result[j];
}
delete [] a;
delete [] t;
}
//Decrypt exactly one block of ciphertext.
// in - The ciphertext.
// result - The plaintext generated from a ciphertext using the session key.
void CRijndael::DecryptBlock(char const* in, char* result)
{
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
if(DEFAULT_BLOCK_SIZE == m_blockSize)
{
DefDecryptBlock(in, result);
return;
}
int BC = m_blockSize / 4;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = sm_shifts[SC][1][1];
int s2 = sm_shifts[SC][2][1];
int s3 = sm_shifts[SC][3][1];
//Temporary Work Arrays
int* a = new int[BC];
int* t = new int[BC];
int i;
int tt;
int* pi = t;
for(i=0; i<BC; i++)
{
*pi = ((unsigned char)*(in++) << 24);
*pi |= ((unsigned char)*(in++) << 16);
*pi |= ((unsigned char)*(in++) << 8);
(*(pi++) |= (unsigned char)*(in++)) ^= decryptKeys[0][i];
}
//Apply Round Transforms
for(int r=1; r<10; r++)
{
for(i=0; i<BC; i++)
a[i] = (sm_T5[(t[i] >> 24) & 0xFF] ^
sm_T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
sm_T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
sm_T8[ t[(i + s3) % BC] & 0xFF]) ^ decryptKeys[r][i];
memcpy(t, a, 4*BC);
}
int j;
//Last Round is Special
for(i=0,j=0; i<BC; i++)
{
tt = decryptKeys[10][i];
result[j++] = SBoxInv[(t[i] >> 24) & 0xFF] ^ (tt >> 24);
result[j++] = SBoxInv[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16);
result[j++] = SBoxInv[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8);
result[j++] = SBoxInv[ t[(i + s3) % BC] & 0xFF] ^ tt;
}
delete [] a;
delete [] t;
}
void CRijndael::Encrypt(char const* in, char* result, size_t n)
{
memset(result,0,300);
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
//n should be > 0 and multiple of m_blockSize
if(0==n || n%m_blockSize!=0)
throw exception(sm_szErrorMsg2);
int i;
char const* pin;
char* presult;
for(i=0,pin=in,presult=result; i<n/m_blockSize; i++)
{
EncryptBlock(pin, presult);
pin += m_blockSize;
presult += m_blockSize;
}
result[n] = '\0';
}
void CRijndael::Decrypt(char const* in, char* result, size_t n)
{
if(false==m_bKeyInit)
throw exception(sm_szErrorMsg1);
//n should be > 0 and multiple of m_blockSize
//if(0==n || n%m_blockSize!=0)
// throw exception(sm_szErrorMsg2);
int i;
char const* pin;
char* presult;
for(i=0,pin=in,presult=result; i<n/m_blockSize; i++)
{
DecryptBlock(pin, presult);
pin += m_blockSize;
presult += m_blockSize;
}
result[n] = '\0';
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -