⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testmlpunit.pas

📁 maths lib with source
💻 PAS
📖 第 1 页 / 共 3 页
字号:
unit testmlpunit;
interface
uses Math, Ap, Sysutils, mlpbase, trinverse, lbfgs, cholesky, spdsolve, mlptrain;

function TestMLP(Silent : Boolean):Boolean;
function testmlpunit_test_silent():Boolean;
function testmlpunit_test():Boolean;

implementation

procedure CreateNetwork(var Network : MultiLayerPerceptron;
     NKind : Integer;
     A1 : Double;
     A2 : Double;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer);forward;
procedure UnsetNetwork(var Network : MultiLayerPerceptron);forward;
procedure TestInformational(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);forward;
procedure TestProcessing(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);forward;
procedure TestGradient(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);forward;
procedure TestHessian(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);forward;


function TestMLP(Silent : Boolean):Boolean;
var
    WasErrors : Boolean;
    PassCount : Integer;
    MaxN : Integer;
    MaxHid : Integer;
    Info : Integer;
    NF : Integer;
    NHid : Integer;
    NL : Integer;
    NHid1 : Integer;
    NHid2 : Integer;
    NKind : Integer;
    I : Integer;
    J : Integer;
    Network : MultiLayerPerceptron;
    Network2 : MultiLayerPerceptron;
    Rep : MLPReport;
    CVRep : MLPCVReport;
    NCount : Integer;
    XY : TReal2DArray;
    ValXY : TReal2DArray;
    SSize : Integer;
    ValSize : Integer;
    AllSame : Boolean;
    InfErrors : Boolean;
    ProcErrors : Boolean;
    GradErrors : Boolean;
    HessErrors : Boolean;
    TrnErrors : Boolean;
begin
    WasErrors := False;
    InfErrors := False;
    ProcErrors := False;
    GradErrors := False;
    HessErrors := False;
    TrnErrors := False;
    PassCount := 10;
    MaxN := 4;
    MaxHid := 4;
    
    //
    // General multilayer network tests
    //
    NF:=1;
    while NF<=MaxN do
    begin
        NL:=1;
        while NL<=MaxN do
        begin
            NHid1:=0;
            while NHid1<=MaxHid do
            begin
                NHid2:=0;
                while NHid2<=0 do
                begin
                    NKind:=0;
                    while NKind<=3 do
                    begin
                        
                        //
                        //  Skip meaningless parameters combinations
                        //
                        if (NKind=1) and (NL<2) then
                        begin
                            Inc(NKind);
                            Continue;
                        end;
                        if (NHid1=0) and (NHid2<>0) then
                        begin
                            Inc(NKind);
                            Continue;
                        end;
                        
                        //
                        // Tests
                        //
                        TestInformational(NKind, NF, NHid1, NHid2, NL, PassCount, InfErrors);
                        TestProcessing(NKind, NF, NHid1, NHid2, NL, PassCount, ProcErrors);
                        TestGradient(NKind, NF, NHid1, NHid2, NL, PassCount, GradErrors);
                        TestHessian(NKind, NF, NHid1, NHid2, NL, PassCount, HessErrors);
                        Inc(NKind);
                    end;
                    Inc(NHid2);
                end;
                Inc(NHid1);
            end;
            Inc(NL);
        end;
        Inc(NF);
    end;
    
    //
    // Test network training on simple XOR problem
    //
    SetLength(XY, 3+1, 2+1);
    XY[0,0] := -1;
    XY[0,1] := -1;
    XY[0,2] := -1;
    XY[1,0] := +1;
    XY[1,1] := -1;
    XY[1,2] := +1;
    XY[2,0] := -1;
    XY[2,1] := +1;
    XY[2,2] := +1;
    XY[3,0] := +1;
    XY[3,1] := +1;
    XY[3,2] := -1;
    MLPCreate1(2, 2, 1, Network);
    MLPTrainLM(Network, XY, 4, 0.001, 10, Info, Rep);
    TrnErrors := TrnErrors or (MLPRMSError(Network, XY, 4)>0.1);
    
    //
    // Test CV on random noisy problem
    //
    NCount := 100;
    SetLength(XY, NCount-1+1, 1+1);
    I:=0;
    while I<=NCount-1 do
    begin
        XY[I,0] := 2*RandomReal-1;
        XY[I,1] := RandomInteger(4);
        Inc(I);
    end;
    MLPCreateC0(1, 4, Network);
    MLPKFoldCVLM(Network, XY, NCount, 0.001, 5, 10, Info, Rep, CVRep);
    
    //
    // Final report
    //
    WasErrors := InfErrors or ProcErrors or GradErrors or HessErrors or TrnErrors;
    if  not Silent then
    begin
        Write(Format('MLP TEST'#13#10'',[]));
        Write(Format('INFORMATIONAL FUNCTIONS:                 ',[]));
        if  not InfErrors then
        begin
            Write(Format('OK'#13#10'',[]));
        end
        else
        begin
            Write(Format('FAILED'#13#10'',[]));
        end;
        Write(Format('BASIC PROCESSING:                        ',[]));
        if  not ProcErrors then
        begin
            Write(Format('OK'#13#10'',[]));
        end
        else
        begin
            Write(Format('FAILED'#13#10'',[]));
        end;
        Write(Format('GRADIENT CALCULATION:                    ',[]));
        if  not GradErrors then
        begin
            Write(Format('OK'#13#10'',[]));
        end
        else
        begin
            Write(Format('FAILED'#13#10'',[]));
        end;
        Write(Format('HESSIAN CALCULATION:                     ',[]));
        if  not HessErrors then
        begin
            Write(Format('OK'#13#10'',[]));
        end
        else
        begin
            Write(Format('FAILED'#13#10'',[]));
        end;
        Write(Format('TRAINING:                                ',[]));
        if  not TrnErrors then
        begin
            Write(Format('OK'#13#10'',[]));
        end
        else
        begin
            Write(Format('FAILED'#13#10'',[]));
        end;
        if WasErrors then
        begin
            Write(Format('TEST SUMMARY: FAILED'#13#10'',[]));
        end
        else
        begin
            Write(Format('TEST SUMMARY: PASSED'#13#10'',[]));
        end;
        Write(Format(''#13#10''#13#10'',[]));
    end;
    Result :=  not WasErrors;
end;


(*************************************************************************
Network creation
*************************************************************************)
procedure CreateNetwork(var Network : MultiLayerPerceptron;
     NKind : Integer;
     A1 : Double;
     A2 : Double;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer);
begin
    Assert((NIn>0) and (NHid1>=0) and (NHid2>=0) and (NOut>0), 'CreateNetwork error');
    Assert((NHid1<>0) or (NHid2=0), 'CreateNetwork error');
    Assert((NKind<>1) or (NOut>=2), 'CreateNetwork error');
    if NHid1=0 then
    begin
        
        //
        // No hidden layers
        //
        if NKind=0 then
        begin
            MLPCreate0(NIn, NOut, Network);
        end
        else
        begin
            if NKind=1 then
            begin
                MLPCreateC0(NIn, NOut, Network);
            end
            else
            begin
                if NKind=2 then
                begin
                    MLPCreateB0(NIn, NOut, A1, A2, Network);
                end
                else
                begin
                    if NKind=3 then
                    begin
                        MLPCreateR0(NIn, NOut, A1, A2, Network);
                    end;
                end;
            end;
        end;
        Exit;
    end;
    if NHid2=0 then
    begin
        
        //
        // One hidden layer
        //
        if NKind=0 then
        begin
            MLPCreate1(NIn, NHid1, NOut, Network);
        end
        else
        begin
            if NKind=1 then
            begin
                MLPCreateC1(NIn, NHid1, NOut, Network);
            end
            else
            begin
                if NKind=2 then
                begin
                    MLPCreateB1(NIn, NHid1, NOut, A1, A2, Network);
                end
                else
                begin
                    if NKind=3 then
                    begin
                        MLPCreateR1(NIn, NHid1, NOut, A1, A2, Network);
                    end;
                end;
            end;
        end;
        Exit;
    end;
    
    //
    // Two hidden layers
    //
    if NKind=0 then
    begin
        MLPCreate2(NIn, NHid1, NHid2, NOut, Network);
    end
    else
    begin
        if NKind=1 then
        begin
            MLPCreateC2(NIn, NHid1, NHid2, NOut, Network);
        end
        else
        begin
            if NKind=2 then
            begin
                MLPCreateB2(NIn, NHid1, NHid2, NOut, A1, A2, Network);
            end
            else
            begin
                if NKind=3 then
                begin
                    MLPCreateR2(NIn, NHid1, NHid2, NOut, A1, A2, Network);
                end;
            end;
        end;
    end;
end;


(*************************************************************************
Unsets network (initialize it to smallest network possible
*************************************************************************)
procedure UnsetNetwork(var Network : MultiLayerPerceptron);
begin
    MLPCreate0(1, 1, Network);
end;


(*************************************************************************
Iformational functions test
*************************************************************************)
procedure TestInformational(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);
var
    Network : MultiLayerPerceptron;
    N1 : Integer;
    N2 : Integer;
    WCount : Integer;
begin
    CreateNetwork(Network, NKind, 0.0, 0.0, NIn, NHid1, NHid2, NOut);
    MLPProperties(Network, N1, N2, WCount);
    Err := Err or (N1<>NIn) or (N2<>NOut) or (WCount<=0);
end;


(*************************************************************************
Processing functions test
*************************************************************************)
procedure TestProcessing(NKind : Integer;
     NIn : Integer;
     NHid1 : Integer;
     NHid2 : Integer;
     NOut : Integer;
     PassCount : Integer;
     var Err : Boolean);
var
    Network : MultiLayerPerceptron;
    Network2 : MultiLayerPerceptron;
    N1 : Integer;
    N2 : Integer;
    WCount : Integer;
    ZeroNet : Boolean;
    A1 : Double;
    A2 : Double;
    Pass : Integer;
    I : Integer;
    AllSame : Boolean;
    RLen : Integer;
    X1 : TReal1DArray;
    X2 : TReal1DArray;
    Y1 : TReal1DArray;
    Y2 : TReal1DArray;
    RA : TReal1DArray;
    RA2 : TReal1DArray;
    V : Double;
begin
    Assert(PassCount>=2, 'PassCount<2!');
    
    //
    // Prepare network
    //
    A1 := 0;
    A2 := 0;
    if NKind=2 then
    begin
        A1 := 1000*RandomReal-500;
        A2 := 2*RandomReal-1;
    end;
    if NKind=3 then
    begin
        A1 := 1000*RandomReal-500;
        A2 := A1+(2*RandomInteger(2)-1)*(0.1+0.9*RandomReal);
    end;
    CreateNetwork(Network, NKind, A1, A2, NIn, NHid1, NHid2, NOut);
    MLPProperties(Network, N1, N2, WCount);
    
    //
    // Initialize arrays
    //
    SetLength(X1, NIn-1+1);
    SetLength(X2, NIn-1+1);
    SetLength(Y1, NOut-1+1);
    SetLength(Y2, NOut-1+1);
    
    //
    // Main cycle
    //
    Pass:=1;
    while Pass<=PassCount do
    begin
        
        //
        // Last run is made on zero network
        //
        MLPRandomizeFull(Network);
        ZeroNet := False;
        if Pass=PassCount then
        begin
            APVMul(@Network.Weights[0], 0, WCount-1, 0);
            ZeroNet := True;
        end;
        
        //
        // Same inputs leads to same outputs
        //
        I:=0;
        while I<=NIn-1 do
        begin
            X1[I] := 2*RandomReal-1;
            X2[I] := X1[I];
            Inc(I);
        end;
        I:=0;
        while I<=NOut-1 do
        begin
            Y1[I] := 2*RandomReal-1;
            Y2[I] := 2*RandomReal-1;
            Inc(I);
        end;
        MLPProcess(Network, X1, Y1);
        MLPProcess(Network, X2, Y2);
        AllSame := True;
        I:=0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -