📄 triangle.m
字号:
%三边测量的定位算法
%dA,dB,dC为A,B,C到未知节点(假定坐标[x,y]未知)的模拟测量距离
function [P] = Triangle(A,B,C,dA,dB,dC)
%A,B,C为三个选定的信标节点,节点坐标已知(为便于防真及验证,代码中采用的等边三角形)
%A = [0,0];
%B = [25,25*sqrt(3)];
%C = [50,0];
%定义未知坐标x,y为符号变量
syms x y;
%距离方程,以信标节点为圆心,信标节点到未知节点的测量距离为半径作三个圆
f1 = (A(1)-x)^2+(A(2)-y)^2-dA^2;
f2 = (B(1)-x)^2+(B(2)-y)^2-dB^2;
f3 = (C(1)-x)^2+(C(2)-y)^2-dC^2;
%任两个方程联立,求任两圆交点
s1 = solve(f1,f2); %求A,B两圆的交点
s2 = solve(f2,f3); %求B,C两圆的交点
s3 = solve(f1,f3); %求A,C两圆的交点
%将结果(符号变量)转换为双精度数值
x1 = double(s1.x);
y1 = double(s1.y);
x2 = double(s2.x);
y2 = double(s2.y);
x3 = double(s3.x);
y3 = double(s3.y);
%选择内侧的三个交点
%两圆相交于两点,距第三个圆心近的为选定交点Pab,Pbc,Pac
d1(1) = sqrt(((C(1)-x1(1))^2+(C(2)-y1(1))^2));
d1(2) = sqrt(((C(1)-x1(2))^2+(C(2)-y1(2))^2));
if d1(1) <= d1(2)
Pab(1) = x1(1);
Pab(2) = y1(1);
else
Pab(1) = x1(2);
Pab(2) = y1(2);
end
d2(1) = sqrt(((A(1)-x2(1))^2+(A(2)-y2(1))^2));
d2(2) = sqrt(((A(1)-x2(2))^2+(A(2)-y2(2))^2));
if d2(1) <= d2(2)
Pbc(1) = x2(1);
Pbc(2) = y2(1);
else
Pbc(1) = x2(2);
Pbc(2) = y2(2);
end
d3(1) = sqrt(((B(1)-x3(1))^2+(B(2)-y3(1))^2));
d3(2) = sqrt(((B(1)-x3(2))^2+(B(2)-y3(2))^2));
if d3(1) <= d3(2)
Pac(1) = x3(1);
Pac(2) = y3(1);
else
Pac(1) = x3(2);
Pac(2) = y3(2);
end
%Pab
%Pbc
%Pac
%求三个圆内侧三个交点Pab,Pbc,Pac的质心,即为未知节点P,完成定位
P(1) = (Pab(1)+Pbc(1)+Pac(1))/3;
P(2) = (Pab(2)+Pbc(2)+Pac(2))/3;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -