⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecvq.c

📁 spiht for linux this is used to decod and encode vedio i wich all enjoy
💻 C
字号:
/* *  * QccPack: Quantization, compression, and coding libraries * Copyright (C) 1997-2009  James E. Fowler *  * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. *  * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Library General Public License for more details. *  * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 675 Mass Ave, Cambridge, * MA 02139, USA. *  */#include "libQccPack.h"int QccVQEntropyConstrainedVQ(const QccDataset *dataset,                              const QccVQCodebook *codebook,                              double lambda,                              QccVector distortion,                              int *partition,                              QccVQDistortionMeasure                              distortion_measure){  int codebook_size, vector_dimension, block_size;  int current_vector;  int codeword;  double min_J, J;  int winner;  double distance, winning_distance;    if ((dataset == NULL) || (codebook == NULL))    return(0);    if (dataset->vectors == NULL)    return(0);    if (distortion_measure == NULL)    distortion_measure = (QccVQDistortionMeasure)QccVectorSquareDistance;  vector_dimension = dataset->vector_dimension;  if (vector_dimension != codebook->codeword_dimension)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQ): Dataset %s and codebook %s have different vector dimensions",                         dataset->filename, codebook->filename);      return(1);    }  block_size = QccDatasetGetBlockSize(dataset);  codebook_size = codebook->num_codewords;    for (current_vector = 0; current_vector < block_size; current_vector++)    {      min_J = MAXDOUBLE;      winner = 0;      winning_distance = MAXDOUBLE;            for (codeword = 0; codeword < codebook_size; codeword++)        if (codebook->codeword_probs[codeword] > 0)          {            distance =               distortion_measure(dataset->vectors[current_vector],                                 codebook->codewords[codeword],                                 vector_dimension,                                 current_vector);            J = distance + lambda * codebook->codeword_codelengths[codeword];                        if (J < min_J)              {                min_J = J;                winner = codeword;                winning_distance = distance;              }          }            if (distortion != NULL)        distortion[current_vector] = winning_distance;      if (partition != NULL)        partition[current_vector] = winner;    }    return(0);}static int QccVQEntropyConstrainedVQTrainingIteration(const                                                      QccDataset *dataset,                                                      QccVQCodebook *codebook,                                                      double lambda,                                                      QccVector distortion,                                                      int *partition,                                                      QccVQDistortionMeasure                                                      distortion_measure){  int return_value;  int vector_dimension;  int num_vectors;  QccVector mean_vector;  int *codeword_cnt = NULL;  int codeword;  int current_vector;    vector_dimension = dataset->vector_dimension;  num_vectors = QccDatasetGetBlockSize(dataset);    if ((mean_vector = QccVectorAlloc(vector_dimension)) == NULL)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTrainingIteration): Error allocating memory");      goto Error;    }  if ((codeword_cnt =        (int *)calloc(codebook->num_codewords, sizeof(int))) == NULL)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTrainingIteration): Error allocating memory");      goto Error;    }    /*  Find new centroids  */  for (codeword = 0; codeword < codebook->num_codewords; codeword++)    {      QccVectorZero(mean_vector, vector_dimension);      for (current_vector = 0; current_vector < num_vectors;           current_vector++)        if (partition[current_vector] == codeword)          {            QccVectorAdd(mean_vector, dataset->vectors[current_vector],                         vector_dimension);            codeword_cnt[codeword]++;          }            codebook->codeword_probs[codeword] =        (double)codeword_cnt[codeword]/num_vectors;            if (codeword_cnt[codeword])        QccVectorScalarMult(mean_vector,                             (double)(1.0/(double)codeword_cnt[codeword]),                            vector_dimension);            QccVectorCopy((QccVector)codebook->codewords[codeword],                    mean_vector, vector_dimension);    }    QccVQCodebookSetCodewordLengths(codebook);    /*  Find new partitions  */  if (QccVQEntropyConstrainedVQ(dataset, codebook, lambda,                                 distortion, partition, distortion_measure))    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTrainingIteration): Error calling QccVQEntropyConstrainedVQ()");      goto Error;    }    return_value = 0;  goto Return; Error:  return_value = 1; Return:  QccVectorFree(mean_vector);  if (codeword_cnt != NULL)     QccFree(codeword_cnt);  return(return_value);}int QccVQEntropyConstrainedVQTraining(const QccDataset *dataset,                                      QccVQCodebook *codebook,                                      double lambda,                                      int num_iterations,                                      double threshold,                                      QccVQDistortionMeasure                                      distortion_measure){  int return_value;  QccVector distortion = NULL;  int *partition = NULL;  int iteration;  double D, R, J;  double previous_J = MAXDOUBLE;  int block_size;  int codebook_size;  QccVector probs;  QccVQCodebook new_codebook;  int codeword, new_codeword;    QccVQCodebookInitialize(&new_codebook);  if (dataset->vector_dimension != codebook->codeword_dimension)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): codebook %s and dataset %s do not have the same vector dimension",                         codebook->filename, dataset->filename);      goto Error;    }    codebook_size = codebook->num_codewords;    block_size = QccDatasetGetBlockSize(dataset);  if ((distortion = QccVectorAlloc(block_size)) == NULL)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error allocating memory");      goto Error;    }    if ((partition = (int *)malloc(sizeof(int)*block_size)) == NULL)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error allocating memory");      goto Error;    }  if ((probs = QccVectorAlloc(codebook_size)) == NULL)    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVectorAlloc()");      goto Error;    }    if (QccVQEntropyConstrainedVQ(dataset, codebook, lambda,                                distortion, partition,                                distortion_measure))    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQVectorQuantization()");      goto Error;    }  D = QccVectorMean(distortion, block_size);  QccVectorGetSymbolProbs(partition, block_size,                             probs, codebook_size);  R = QccENTEntropy(probs, codebook_size);  previous_J = D + lambda*R;    if (previous_J != 0.0)    {      if (num_iterations != 0)        {          for (iteration = 0; iteration < num_iterations; iteration++)            if (QccVQEntropyConstrainedVQTrainingIteration(dataset, codebook,                                                            lambda,                                                           distortion,                                                            partition,                                                           distortion_measure))              {                QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQEntropyConstrainedVQTrainingIteration()");                goto Error;              }        }      else        for (;;)          {            {              int i;              int nullcws;              for (nullcws = 0, i = 0; i < codebook->num_codewords; i++)                if (codebook->codeword_probs[i] != 0)                  nullcws++;            }                        if (QccVQEntropyConstrainedVQTrainingIteration(dataset, codebook,                                                            lambda,                                                           distortion,                                                            partition,                                                           distortion_measure))              {                QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQEntropyConstrainedVQTrainingIteration()");                goto Error;              }                        D = QccVectorMean(distortion, block_size);            QccVectorGetSymbolProbs(partition, block_size,                                    probs, codebook_size);                        R = QccENTEntropy(probs, codebook_size);            J = D + lambda*R;                        if ((((previous_J - J)/previous_J) < threshold) ||                (J == 0.0))              break;            previous_J = J;          }    }    for (codeword = 0, new_codebook.num_codewords = 0; codeword < codebook_size;       codeword++)    if (codebook->codeword_probs[codeword] > 0)      new_codebook.num_codewords++;    new_codebook.codeword_dimension = codebook->codeword_dimension;  if (QccVQCodebookAlloc(&new_codebook))    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQCodebookAlloc()");      goto Error;    }    for (codeword = 0, new_codeword = 0; codeword < codebook_size;       codeword++)    if (codebook->codeword_probs[codeword] > 0)      {        QccVectorCopy((QccVector)new_codebook.codewords[new_codeword],                      (QccVector)codebook->codewords[codeword],                      codebook->codeword_dimension);        new_codebook.codeword_probs[new_codeword] =           codebook->codeword_probs[codeword];        new_codeword++;      }  QccVQCodebookFree(codebook);  codebook->num_codewords = new_codebook.num_codewords;  codebook->codewords = new_codebook.codewords;  codebook->codeword_probs = new_codebook.codeword_probs;  codebook->codeword_codelengths = new_codebook.codeword_codelengths;  if (QccVQCodebookSetIndexLength(codebook))    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQCodebookSetIndexLength()");      goto Error;    }  if (QccVQCodebookSetCodewordLengths(codebook))    {      QccErrorAddMessage("(QccVQEntropyConstrainedVQTraining): Error calling QccVQCodebookSetCodewordLengths()");      goto Error;    }  return_value = 0;  goto Return; Error:  return_value = 1; Return:  QccVectorFree(distortion);  if (partition != NULL)    QccFree(partition);  return(return_value);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -