📄 klttce3d_lossless.c
字号:
/* * * QccPack: Quantization, compression, and coding utilities * Copyright (C) 1997-2007 James E. Fowler * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * *//* * * Written by * * Jing Zhang, at Mississippi State University, 2008 * */#include "libQccPack.h"#define QCCWAVKLTTCE3D_BOUNDARY_VALUE (1e-6)//definition used in context information#define QCCWAVKLTTCE3D_Z 0 //zero, AKA, insignificant#define QCCWAVKLTTCE3D_NZN_NEW 2 //non-zero-neighbor#define QCCWAVKLTTCE3D_S 3 //significant#define QCCWAVKLTTCE3D_S_NEW 4#define QCCWAVKLTTCE3D_NZN 5// more refinement can be made if direction of Tarp filter is considered// but the improvement is minor//ugly fix, use 1-D IIR filter to provide PMF estimate#define QCCWAVKLTTCE3D_ALPHA_1D 0.995 #define QCCWAVKLTTCE3D_ALPHA_1D_O 0.005// this should be 0.5, however, 0.3 seems to work a little better (minor)// reason unknown#define QCCWAVKLTTCE3D_REFINE_HOLDER 0.3 // threshold for cross-scale prediction...#define QCCWAVKLTTCE3D_PREDICT_THRESHOLD 0.05 //weight factor for cross-scale and current scale#define QCCWAVKLTTCE3D_CURRENT_SCALE 0.6 #define QCCWAVKLTTCE3D_PARENT_SCALE 0.4 static int QccWAVklttce3DEncodeBitPlaneInfo(QccBitBuffer *output_buffer, int num_subbands, int *max_coefficient_bits){ int subband; int num_zeros = 0; for (subband = 1; subband < num_subbands; subband++) { num_zeros = max_coefficient_bits[subband-1] - max_coefficient_bits[subband]; if(num_zeros>0) QccBitBufferPutBit(output_buffer, 0); else QccBitBufferPutBit(output_buffer, 1); } for (subband = 1; subband < num_subbands; subband++) { for (num_zeros = abs(max_coefficient_bits[subband-1] - max_coefficient_bits[subband]); num_zeros > 0; num_zeros--) if (QccBitBufferPutBit(output_buffer, 0)) return(1); if (QccBitBufferPutBit(output_buffer, 1)) return(1); } return(0);}static int QccWAVklttce3DDecodeBitPlaneInfo(QccBitBuffer *input_buffer, int num_subbands, int *max_bits, int max_coefficient_bits){ int subband; int bit_value; int *max_bits_sign; if ((max_bits_sign = (int *)malloc(sizeof(int) * num_subbands )) == NULL) { QccErrorAddMessage("(QccWAVklttce3DDecodeBitPlaneInfo): Error allocating memory"); } max_bits[0] = max_coefficient_bits; for (subband = 1; subband < num_subbands; subband++) { QccBitBufferGetBit(input_buffer,&bit_value); if (bit_value == 0) max_bits_sign[subband]=1; else max_bits_sign[subband]=-1; } for (subband = 1; subband < num_subbands; subband++) { max_bits[subband] = 0; do { if (QccBitBufferGetBit(input_buffer,&bit_value)) return(1); max_bits[subband]++; } while (bit_value == 0); max_bits[subband]--; max_bits[subband] = max_bits[subband-1] - max_bits[subband]*max_bits_sign[subband]; } return(0);}static int QccWAVTce3DUpdateModel(QccENTArithmeticModel *model, double prob){ double p[2]; p[0] = 1 - prob; p[1] = prob; if (QccENTArithmeticSetModelProbabilities(model, p, 0)) { QccErrorAddMessage("(QccWAVTarp3DUpdateModel): Error calling QccENTArithmeticSetModelProbabilities()"); return(1); } return(0);}static int QccWAVklttceForwardKLTDWT(QccWAVSubbandPyramid3DInt *image_subband_pyramid, int num_levels, const QccWAVWavelet *wavelet, QccHYPrklt *rklt){ int return_value; image_subband_pyramid->temporal_num_levels = 0; image_subband_pyramid->spatial_num_levels = 0; if (QccHYPrkltTrain(image_subband_pyramid->volume, image_subband_pyramid->num_frames, image_subband_pyramid->num_rows, image_subband_pyramid->num_cols, rklt)) { QccErrorAddMessage("(QccWAVklttceForwardKLTDWT): Error calling QccHYPrkltTrain()"); goto Error; } if (QccHYPrkltFactorization(rklt)) { QccErrorAddMessage("(QccWAVklttceForwardKLTDWT): Error calling QccHYPrkltFactorization()"); goto Error; } if (QccHYPrkltTransform(image_subband_pyramid->volume, image_subband_pyramid->num_frames, image_subband_pyramid->num_rows, image_subband_pyramid->num_cols, rklt)) { QccErrorAddMessage("(QccWAVklttceForwardKLTDWT): Error calling QccHYPrkltTransform()"); goto Error; } if (QccWAVSubbandPyramid3DIntDWT(image_subband_pyramid, QCCWAVSUBBANDPYRAMID3DINT_PACKET, 0, num_levels, wavelet)) { QccErrorAddMessage("(QccWAVklttceForwardKLTDWT): Error calling QccWAVSubbandPyramid3DIntDWT()"); goto Error; } return_value = 0; goto Return; Error: return_value = 1; Return: return(return_value);}static int QccWAVklttceInverseKLTDWT(QccWAVSubbandPyramid3DInt *image_subband_pyramid, const QccWAVWavelet *wavelet, int num_levels, const QccHYPrklt *rklt){ int return_value; if (QccWAVSubbandPyramid3DIntInverseDWT(image_subband_pyramid, wavelet)) { QccErrorAddMessage("(QccWAVklttceInverseKLTDWT): Error calling QccWAVSubbandPyramid3DIntInverseDWT()"); goto Error; } if (QccHYPrkltInverseTransform(image_subband_pyramid->volume, image_subband_pyramid->num_frames, image_subband_pyramid->num_rows, image_subband_pyramid->num_cols, rklt)) { QccErrorAddMessage("(QccWAVklttceInverseKLTDWT): Error calling QccHYPrkltInverseTransform(()"); goto Error; } return_value = 0; goto Return; Error: return_value = 1; Return: return(return_value);}static int QccWAVklttce3DLosslessForwardTransform(QccWAVSubbandPyramid3DInt *image_subband_pyramid, char ***sign_array, const QccIMGImageCube *image, int num_levels, int **max_coefficient_bits, const QccWAVWavelet *wavelet, QccHYPrklt *rklt){ int coefficient_magnitude; int max_coefficient = -MAXINT; int frame, row, col; int num_subbands,subband; int subband_origin_frame; int subband_origin_row; int subband_origin_col; int subband_num_frames; int subband_num_rows; int subband_num_cols; num_subbands = QccWAVSubbandPyramid3DIntNumLevelsToNumSubbandsPacket(0, num_levels); for (frame = 0; frame <image->num_frames; frame++) for (row = 0; row <image->num_rows; row++) for (col = 0; col <image->num_cols; col++) image_subband_pyramid->volume[frame][row][col] = (int)image->volume[frame][row][col]; if (QccWAVklttceForwardKLTDWT(image_subband_pyramid, num_levels, wavelet, rklt)) { QccErrorAddMessage("(QccWAVklttce3DLosslessForwardTransform): Error calling QccWAVklttceForwardKLTDWT()"); return(1); } for (subband = 0; subband < num_subbands; subband++) { if (QccWAVSubbandPyramid3DIntSubbandSize(image_subband_pyramid, subband, &subband_num_frames, &subband_num_rows, &subband_num_cols)) { QccErrorAddMessage("(QccWAVklttce3DLosslessForwardTransform): Error calling QccWAVSubbandPyramid3DIntSubbandSize()"); return(1); } if (QccWAVSubbandPyramid3DIntSubbandOffsets(image_subband_pyramid, subband, &subband_origin_frame, &subband_origin_row, &subband_origin_col)) { QccErrorAddMessage("(QccWAVklttce3DLosslessForwardTransform): Error calling QccWAVSubbandPyramid3DIntSubbandOffsets()"); return(1); } for (frame = 0; frame < subband_num_frames; frame++) { max_coefficient = -MAXINT; for (row = 0; row < subband_num_rows; row++) for (col = 0; col < subband_num_cols; col++) { coefficient_magnitude = fabs(image_subband_pyramid->volume [subband_origin_frame+frame] [subband_origin_row+row] [subband_origin_col+col]); if (image_subband_pyramid->volume [subband_origin_frame+frame] [subband_origin_row+row] [subband_origin_col+col] != coefficient_magnitude) { image_subband_pyramid->volume [subband_origin_frame+frame] [subband_origin_row+row] [subband_origin_col+col] = coefficient_magnitude;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -