⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arch-i386-bootsetup.s

📁 包括初始化、进程管理、进程通信、内存管理、设备管理、中断、文件系统、系统调用等精选源码分析。
💻 S
📖 第 1 页 / 共 2 页
字号:
	int	$0x15
	jc	done_apm_bios			# Nope, no APM BIOS
	
	cmpw	$0x0504d, %bx			# Check for "PM" signature
	jne	done_apm_bios			# No signature, no APM BIOS

	andw	$0x02, %cx			# Is 32 bit supported?
	je	done_apm_bios			# No 32-bit, no (good) APM BIOS

	movw	$0x05304, %ax			# Disconnect first just in case
	xorw	%bx, %bx
	int	$0x15				# ignore return code
	movw	$0x05303, %ax			# 32 bit connect
	xorl	%ebx, %ebx
	xorw	%cx, %cx			# paranoia :-)
	xorw	%dx, %dx			#   ...
	xorl	%esi, %esi			#   ...
	xorw	%di, %di			#   ...
	int	$0x15
	jc	no_32_apm_bios			# Ack, error. 

	movw	%ax,  (66)			# BIOS code segment
	movl	%ebx, (68)			# BIOS entry point offset
	movw	%cx,  (72)			# BIOS 16 bit code segment
	movw	%dx,  (74)			# BIOS data segment
	movl	%esi, (78)			# BIOS code segment lengths
	movw	%di,  (82)			# BIOS data segment length
# Redo the installation check as the 32 bit connect
# modifies the flags returned on some BIOSs
	movw	$0x05300, %ax			# APM BIOS installation check
	xorw	%bx, %bx
	xorw	%cx, %cx			# paranoia
	int	$0x15
	jc	apm_disconnect			# error -> shouldn't happen

	cmpw	$0x0504d, %bx			# check for "PM" signature
	jne	apm_disconnect			# no sig -> shouldn't happen

	movw	%ax, (64)			# record the APM BIOS version
	movw	%cx, (76)			# and flags
	jmp	done_apm_bios

apm_disconnect:					# Tidy up
	movw	$0x05304, %ax			# Disconnect
	xorw	%bx, %bx
	int	$0x15				# ignore return code

	jmp	done_apm_bios

no_32_apm_bios:
	andw	$0xfffd, (76)			# remove 32 bit support bit
done_apm_bios:
#endif

# Now we want to move to protected mode ...
	cmpw	$0, %cs:realmode_swtch
	jz	rmodeswtch_normal

	lcall	%cs:realmode_swtch

	jmp	rmodeswtch_end

rmodeswtch_normal:
        pushw	%cs
	call	default_switch

rmodeswtch_end:
# we get the code32 start address and modify the below 'jmpi'
# (loader may have changed it)
	movl	%cs:code32_start, %eax
	movl	%eax, %cs:code32

# Now we move the system to its rightful place ... but we check if we have a
# big-kernel. In that case we *must* not move it ...
	testb	$LOADED_HIGH, %cs:loadflags
	jz	do_move0			# .. then we have a normal low
						# loaded zImage
						# .. or else we have a high
						# loaded bzImage
	jmp	end_move			# ... and we skip moving

do_move0:
	movw	$0x100, %ax			# start of destination segment
	movw	%cs, %bp			# aka SETUPSEG
	subw	$DELTA_INITSEG, %bp		# aka INITSEG
	movw	%cs:start_sys_seg, %bx		# start of source segment
	cld
do_move:
	movw	%ax, %es			# destination segment
	incb	%ah				# instead of add ax,#0x100
	movw	%bx, %ds			# source segment
	addw	$0x100, %bx
	subw	%di, %di
	subw	%si, %si
	movw 	$0x800, %cx
	rep
	movsw
	cmpw	%bp, %bx			# assume start_sys_seg > 0x200,
						# so we will perhaps read one
						# page more than needed, but
						# never overwrite INITSEG
						# because destination is a
						# minimum one page below source
	jb	do_move

end_move:
# then we load the segment descriptors
	movw	%cs, %ax			# aka SETUPSEG
	movw	%ax, %ds
		
# Check whether we need to be downward compatible with version <=201
	cmpl	$0, cmd_line_ptr
	jne	end_move_self		# loader uses version >=202 features
	cmpb	$0x20, type_of_loader
	je	end_move_self		# bootsect loader, we know of it

# Boot loader doesnt support boot protocol version 2.02.
# If we have our code not at 0x90000, we need to move it there now.
# We also then need to move the params behind it (commandline)
# Because we would overwrite the code on the current IP, we move
# it in two steps, jumping high after the first one.
	movw	%cs, %ax
	cmpw	$SETUPSEG, %ax
	je	end_move_self

	cli					# make sure we really have
						# interrupts disabled !
						# because after this the stack
						# should not be used
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	movw	%ss, %dx
	cmpw	%ax, %dx
	jb	move_self_1

	addw	$INITSEG, %dx
	subw	%ax, %dx			# this will go into %ss after
						# the move
move_self_1:
	movw	%ax, %ds
	movw	$INITSEG, %ax			# real INITSEG
	movw	%ax, %es
	movw	%cs:setup_move_size, %cx
	std					# we have to move up, so we use
						# direction down because the
						# areas may overlap
	movw	%cx, %di
	decw	%di
	movw	%di, %si
	subw	$move_self_here+0x200, %cx
	rep
	movsb
	ljmp	$SETUPSEG, $move_self_here

move_self_here:
	movw	$move_self_here+0x200, %cx
	rep
	movsb
	movw	$SETUPSEG, %ax
	movw	%ax, %ds
	movw	%dx, %ss
end_move_self:					# now we are at the right place
	lidt	idt_48				# load idt with 0,0
	xorl	%eax, %eax			# Compute gdt_base
	movw	%ds, %ax			# (Convert %ds:gdt to a linear ptr)
	shll	$4, %eax
	addl	$gdt, %eax
	movl	%eax, (gdt_48+2)
	lgdt	gdt_48				# load gdt with whatever is
						# appropriate

# that was painless, now we enable a20
	call	empty_8042

	movb	$0xD1, %al			# command write
	outb	%al, $0x64
	call	empty_8042

	movb	$0xDF, %al			# A20 on
	outb	%al, $0x60
	call	empty_8042

#
#	You must preserve the other bits here. Otherwise embarrasing things
#	like laptops powering off on boot happen. Corrected version by Kira
#	Brown from Linux 2.2
#
	inb	$0x92, %al			# 
	orb	$02, %al			# "fast A20" version
	outb	%al, $0x92			# some chips have only this

# wait until a20 really *is* enabled; it can take a fair amount of
# time on certain systems; Toshiba Tecras are known to have this
# problem.  The memory location used here (0x200) is the int 0x80
# vector, which should be safe to use.

	xorw	%ax, %ax			# segment 0x0000
	movw	%ax, %fs
	decw	%ax				# segment 0xffff (HMA)
	movw	%ax, %gs
a20_wait:
	incw	%ax				# unused memory location <0xfff0
	movw	%ax, %fs:(0x200)		# we use the "int 0x80" vector
	cmpw	%gs:(0x210), %ax		# and its corresponding HMA addr
	je	a20_wait			# loop until no longer aliased

# make sure any possible coprocessor is properly reset..
	xorw	%ax, %ax
	outb	%al, $0xf0
	call	delay

	outb	%al, $0xf1
	call	delay

# well, that went ok, I hope. Now we mask all interrupts - the rest
# is done in init_IRQ().
	movb	$0xFF, %al			# mask all interrupts for now
	outb	%al, $0xA1
	call	delay
	
	movb	$0xFB, %al			# mask all irq's but irq2 which
	outb	%al, $0x21			# is cascaded

# Well, that certainly wasn't fun :-(. Hopefully it works, and we don't
# need no steenking BIOS anyway (except for the initial loading :-).
# The BIOS-routine wants lots of unnecessary data, and it's less
# "interesting" anyway. This is how REAL programmers do it.
#
# Well, now's the time to actually move into protected mode. To make
# things as simple as possible, we do no register set-up or anything,
# we let the gnu-compiled 32-bit programs do that. We just jump to
# absolute address 0x1000 (or the loader supplied one),
# in 32-bit protected mode.
#
# Note that the short jump isn't strictly needed, although there are
# reasons why it might be a good idea. It won't hurt in any case.
	movw	$1, %ax				# protected mode (PE) bit
	lmsw	%ax				# This is it!
	jmp	flush_instr

flush_instr:
	xorw	%bx, %bx			# Flag to indicate a boot
	xorl	%esi, %esi			# Pointer to real-mode code
	movw	%cs, %si
	subw	$DELTA_INITSEG, %si
	shll	$4, %esi			# Convert to 32-bit pointer
# NOTE: For high loaded big kernels we need a
#	jmpi    0x100000,__KERNEL_CS
#
#	but we yet haven't reloaded the CS register, so the default size 
#	of the target offset still is 16 bit.
#       However, using an operant prefix (0x66), the CPU will properly
#	take our 48 bit far pointer. (INTeL 80386 Programmer's Reference
#	Manual, Mixing 16-bit and 32-bit code, page 16-6)

	.byte 0x66, 0xea			# prefix + jmpi-opcode
code32:	.long	0x1000				# will be set to 0x100000
						# for big kernels
	.word	__KERNEL_CS

# Here's a bunch of information about your current kernel..
kernel_version:	.ascii	UTS_RELEASE
		.ascii	" ("
		.ascii	LINUX_COMPILE_BY
		.ascii	"@"
		.ascii	LINUX_COMPILE_HOST
		.ascii	") "
		.ascii	UTS_VERSION
		.byte	0

# This is the default real mode switch routine.
# to be called just before protected mode transition
default_switch:
	cli					# no interrupts allowed !
	movb	$0x80, %al			# disable NMI for bootup
						# sequence
	outb	%al, $0x70
	lret

# This routine only gets called, if we get loaded by the simple
# bootsect loader _and_ have a bzImage to load.
# Because there is no place left in the 512 bytes of the boot sector,
# we must emigrate to code space here.
bootsect_helper:
	cmpw	$0, %cs:bootsect_es
	jnz	bootsect_second

	movb	$0x20, %cs:type_of_loader
	movw	%es, %ax
	shrw	$4, %ax
	movb	%ah, %cs:bootsect_src_base+2
	movw	%es, %ax
	movw	%ax, %cs:bootsect_es
	subw	$SYSSEG, %ax
	lret					# nothing else to do for now

bootsect_second:
	pushw	%cx
	pushw	%si
	pushw	%bx
	testw	%bx, %bx			# 64K full?
	jne	bootsect_ex

	movw	$0x8000, %cx			# full 64K, INT15 moves words
	pushw	%cs
	popw	%es
	movw	$bootsect_gdt, %si
	movw	$0x8700, %ax
	int	$0x15
	jc	bootsect_panic			# this, if INT15 fails

	movw	%cs:bootsect_es, %es		# we reset %es to always point
	incb	%cs:bootsect_dst_base+2		# to 0x10000
bootsect_ex:
	movb	%cs:bootsect_dst_base+2, %ah
	shlb	$4, %ah				# we now have the number of
						# moved frames in %ax
	xorb	%al, %al
	popw	%bx
	popw	%si
	popw	%cx
	lret

bootsect_gdt:
	.word	0, 0, 0, 0
	.word	0, 0, 0, 0

bootsect_src:
	.word	0xffff

bootsect_src_base:
	.byte	0x00, 0x00, 0x01		# base = 0x010000
	.byte	0x93				# typbyte
	.word	0				# limit16,base24 =0

bootsect_dst:
	.word	0xffff

bootsect_dst_base:
	.byte	0x00, 0x00, 0x10		# base = 0x100000
	.byte	0x93				# typbyte
	.word	0				# limit16,base24 =0
	.word	0, 0, 0, 0			# BIOS CS
	.word	0, 0, 0, 0			# BIOS DS

bootsect_es:
	.word	0

bootsect_panic:
	pushw	%cs
	popw	%ds
	cld
	leaw	bootsect_panic_mess, %si
	call	prtstr
	
bootsect_panic_loop:
	jmp	bootsect_panic_loop

bootsect_panic_mess:
	.string	"INT15 refuses to access high mem, giving up."

# This routine checks that the keyboard command queue is empty
# (after emptying the output buffers)
#
# Some machines have delusions that the keyboard buffer is always full
# with no keyboard attached...
#
# If there is no keyboard controller, we will usually get 0xff
# to all the reads.  With each IO taking a microsecond and
# a timeout of 100,000 iterations, this can take about half a
# second ("delay" == outb to port 0x80). That should be ok,
# and should also be plenty of time for a real keyboard controller
# to empty.
#

empty_8042:
	pushl	%ecx
	movl	$100000, %ecx

empty_8042_loop:
	decl	%ecx
	jz	empty_8042_end_loop

	call	delay

	inb	$0x64, %al			# 8042 status port
	testb	$1, %al				# output buffer?
	jz	no_output

	call	delay
	inb	$0x60, %al			# read it
	jmp	empty_8042_loop

no_output:
	testb	$2, %al				# is input buffer full?
	jnz	empty_8042_loop			# yes - loop
empty_8042_end_loop:
	popl	%ecx
	ret

# Read the cmos clock. Return the seconds in al
gettime:
	pushw	%cx
	movb	$0x02, %ah
	int	$0x1a
	movb	%dh, %al			# %dh contains the seconds
	andb	$0x0f, %al
	movb	%dh, %ah
	movb	$0x04, %cl
	shrb	%cl, %ah
	aad
	popw	%cx
	ret

# Delay is needed after doing I/O
delay:
	outb	%al,$0x80
	ret

# Descriptor tables
gdt:
	.word	0, 0, 0, 0			# dummy
	.word	0, 0, 0, 0			# unused

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9A00				# code read/exec
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9200				# data read/write
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)
idt_48:
	.word	0				# idt limit = 0
	.word	0, 0				# idt base = 0L
gdt_48:
	.word	0x8000				# gdt limit=2048,
						#  256 GDT entries

	.word	0, 0				# gdt base (filled in later)

# Include video setup & detection code

#include "video.S"

# Setup signature -- must be last
setup_sig1:	.word	SIG1
setup_sig2:	.word	SIG2

# After this point, there is some free space which is used by the video mode
# handling code to store the temporary mode table (not used by the kernel).

modelist:

.text
endtext:
.data
enddata:
.bss
endbss:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -