📄 arch-i386-bootsetup.s
字号:
int $0x15
jc done_apm_bios # Nope, no APM BIOS
cmpw $0x0504d, %bx # Check for "PM" signature
jne done_apm_bios # No signature, no APM BIOS
andw $0x02, %cx # Is 32 bit supported?
je done_apm_bios # No 32-bit, no (good) APM BIOS
movw $0x05304, %ax # Disconnect first just in case
xorw %bx, %bx
int $0x15 # ignore return code
movw $0x05303, %ax # 32 bit connect
xorl %ebx, %ebx
xorw %cx, %cx # paranoia :-)
xorw %dx, %dx # ...
xorl %esi, %esi # ...
xorw %di, %di # ...
int $0x15
jc no_32_apm_bios # Ack, error.
movw %ax, (66) # BIOS code segment
movl %ebx, (68) # BIOS entry point offset
movw %cx, (72) # BIOS 16 bit code segment
movw %dx, (74) # BIOS data segment
movl %esi, (78) # BIOS code segment lengths
movw %di, (82) # BIOS data segment length
# Redo the installation check as the 32 bit connect
# modifies the flags returned on some BIOSs
movw $0x05300, %ax # APM BIOS installation check
xorw %bx, %bx
xorw %cx, %cx # paranoia
int $0x15
jc apm_disconnect # error -> shouldn't happen
cmpw $0x0504d, %bx # check for "PM" signature
jne apm_disconnect # no sig -> shouldn't happen
movw %ax, (64) # record the APM BIOS version
movw %cx, (76) # and flags
jmp done_apm_bios
apm_disconnect: # Tidy up
movw $0x05304, %ax # Disconnect
xorw %bx, %bx
int $0x15 # ignore return code
jmp done_apm_bios
no_32_apm_bios:
andw $0xfffd, (76) # remove 32 bit support bit
done_apm_bios:
#endif
# Now we want to move to protected mode ...
cmpw $0, %cs:realmode_swtch
jz rmodeswtch_normal
lcall %cs:realmode_swtch
jmp rmodeswtch_end
rmodeswtch_normal:
pushw %cs
call default_switch
rmodeswtch_end:
# we get the code32 start address and modify the below 'jmpi'
# (loader may have changed it)
movl %cs:code32_start, %eax
movl %eax, %cs:code32
# Now we move the system to its rightful place ... but we check if we have a
# big-kernel. In that case we *must* not move it ...
testb $LOADED_HIGH, %cs:loadflags
jz do_move0 # .. then we have a normal low
# loaded zImage
# .. or else we have a high
# loaded bzImage
jmp end_move # ... and we skip moving
do_move0:
movw $0x100, %ax # start of destination segment
movw %cs, %bp # aka SETUPSEG
subw $DELTA_INITSEG, %bp # aka INITSEG
movw %cs:start_sys_seg, %bx # start of source segment
cld
do_move:
movw %ax, %es # destination segment
incb %ah # instead of add ax,#0x100
movw %bx, %ds # source segment
addw $0x100, %bx
subw %di, %di
subw %si, %si
movw $0x800, %cx
rep
movsw
cmpw %bp, %bx # assume start_sys_seg > 0x200,
# so we will perhaps read one
# page more than needed, but
# never overwrite INITSEG
# because destination is a
# minimum one page below source
jb do_move
end_move:
# then we load the segment descriptors
movw %cs, %ax # aka SETUPSEG
movw %ax, %ds
# Check whether we need to be downward compatible with version <=201
cmpl $0, cmd_line_ptr
jne end_move_self # loader uses version >=202 features
cmpb $0x20, type_of_loader
je end_move_self # bootsect loader, we know of it
# Boot loader doesnt support boot protocol version 2.02.
# If we have our code not at 0x90000, we need to move it there now.
# We also then need to move the params behind it (commandline)
# Because we would overwrite the code on the current IP, we move
# it in two steps, jumping high after the first one.
movw %cs, %ax
cmpw $SETUPSEG, %ax
je end_move_self
cli # make sure we really have
# interrupts disabled !
# because after this the stack
# should not be used
subw $DELTA_INITSEG, %ax # aka INITSEG
movw %ss, %dx
cmpw %ax, %dx
jb move_self_1
addw $INITSEG, %dx
subw %ax, %dx # this will go into %ss after
# the move
move_self_1:
movw %ax, %ds
movw $INITSEG, %ax # real INITSEG
movw %ax, %es
movw %cs:setup_move_size, %cx
std # we have to move up, so we use
# direction down because the
# areas may overlap
movw %cx, %di
decw %di
movw %di, %si
subw $move_self_here+0x200, %cx
rep
movsb
ljmp $SETUPSEG, $move_self_here
move_self_here:
movw $move_self_here+0x200, %cx
rep
movsb
movw $SETUPSEG, %ax
movw %ax, %ds
movw %dx, %ss
end_move_self: # now we are at the right place
lidt idt_48 # load idt with 0,0
xorl %eax, %eax # Compute gdt_base
movw %ds, %ax # (Convert %ds:gdt to a linear ptr)
shll $4, %eax
addl $gdt, %eax
movl %eax, (gdt_48+2)
lgdt gdt_48 # load gdt with whatever is
# appropriate
# that was painless, now we enable a20
call empty_8042
movb $0xD1, %al # command write
outb %al, $0x64
call empty_8042
movb $0xDF, %al # A20 on
outb %al, $0x60
call empty_8042
#
# You must preserve the other bits here. Otherwise embarrasing things
# like laptops powering off on boot happen. Corrected version by Kira
# Brown from Linux 2.2
#
inb $0x92, %al #
orb $02, %al # "fast A20" version
outb %al, $0x92 # some chips have only this
# wait until a20 really *is* enabled; it can take a fair amount of
# time on certain systems; Toshiba Tecras are known to have this
# problem. The memory location used here (0x200) is the int 0x80
# vector, which should be safe to use.
xorw %ax, %ax # segment 0x0000
movw %ax, %fs
decw %ax # segment 0xffff (HMA)
movw %ax, %gs
a20_wait:
incw %ax # unused memory location <0xfff0
movw %ax, %fs:(0x200) # we use the "int 0x80" vector
cmpw %gs:(0x210), %ax # and its corresponding HMA addr
je a20_wait # loop until no longer aliased
# make sure any possible coprocessor is properly reset..
xorw %ax, %ax
outb %al, $0xf0
call delay
outb %al, $0xf1
call delay
# well, that went ok, I hope. Now we mask all interrupts - the rest
# is done in init_IRQ().
movb $0xFF, %al # mask all interrupts for now
outb %al, $0xA1
call delay
movb $0xFB, %al # mask all irq's but irq2 which
outb %al, $0x21 # is cascaded
# Well, that certainly wasn't fun :-(. Hopefully it works, and we don't
# need no steenking BIOS anyway (except for the initial loading :-).
# The BIOS-routine wants lots of unnecessary data, and it's less
# "interesting" anyway. This is how REAL programmers do it.
#
# Well, now's the time to actually move into protected mode. To make
# things as simple as possible, we do no register set-up or anything,
# we let the gnu-compiled 32-bit programs do that. We just jump to
# absolute address 0x1000 (or the loader supplied one),
# in 32-bit protected mode.
#
# Note that the short jump isn't strictly needed, although there are
# reasons why it might be a good idea. It won't hurt in any case.
movw $1, %ax # protected mode (PE) bit
lmsw %ax # This is it!
jmp flush_instr
flush_instr:
xorw %bx, %bx # Flag to indicate a boot
xorl %esi, %esi # Pointer to real-mode code
movw %cs, %si
subw $DELTA_INITSEG, %si
shll $4, %esi # Convert to 32-bit pointer
# NOTE: For high loaded big kernels we need a
# jmpi 0x100000,__KERNEL_CS
#
# but we yet haven't reloaded the CS register, so the default size
# of the target offset still is 16 bit.
# However, using an operant prefix (0x66), the CPU will properly
# take our 48 bit far pointer. (INTeL 80386 Programmer's Reference
# Manual, Mixing 16-bit and 32-bit code, page 16-6)
.byte 0x66, 0xea # prefix + jmpi-opcode
code32: .long 0x1000 # will be set to 0x100000
# for big kernels
.word __KERNEL_CS
# Here's a bunch of information about your current kernel..
kernel_version: .ascii UTS_RELEASE
.ascii " ("
.ascii LINUX_COMPILE_BY
.ascii "@"
.ascii LINUX_COMPILE_HOST
.ascii ") "
.ascii UTS_VERSION
.byte 0
# This is the default real mode switch routine.
# to be called just before protected mode transition
default_switch:
cli # no interrupts allowed !
movb $0x80, %al # disable NMI for bootup
# sequence
outb %al, $0x70
lret
# This routine only gets called, if we get loaded by the simple
# bootsect loader _and_ have a bzImage to load.
# Because there is no place left in the 512 bytes of the boot sector,
# we must emigrate to code space here.
bootsect_helper:
cmpw $0, %cs:bootsect_es
jnz bootsect_second
movb $0x20, %cs:type_of_loader
movw %es, %ax
shrw $4, %ax
movb %ah, %cs:bootsect_src_base+2
movw %es, %ax
movw %ax, %cs:bootsect_es
subw $SYSSEG, %ax
lret # nothing else to do for now
bootsect_second:
pushw %cx
pushw %si
pushw %bx
testw %bx, %bx # 64K full?
jne bootsect_ex
movw $0x8000, %cx # full 64K, INT15 moves words
pushw %cs
popw %es
movw $bootsect_gdt, %si
movw $0x8700, %ax
int $0x15
jc bootsect_panic # this, if INT15 fails
movw %cs:bootsect_es, %es # we reset %es to always point
incb %cs:bootsect_dst_base+2 # to 0x10000
bootsect_ex:
movb %cs:bootsect_dst_base+2, %ah
shlb $4, %ah # we now have the number of
# moved frames in %ax
xorb %al, %al
popw %bx
popw %si
popw %cx
lret
bootsect_gdt:
.word 0, 0, 0, 0
.word 0, 0, 0, 0
bootsect_src:
.word 0xffff
bootsect_src_base:
.byte 0x00, 0x00, 0x01 # base = 0x010000
.byte 0x93 # typbyte
.word 0 # limit16,base24 =0
bootsect_dst:
.word 0xffff
bootsect_dst_base:
.byte 0x00, 0x00, 0x10 # base = 0x100000
.byte 0x93 # typbyte
.word 0 # limit16,base24 =0
.word 0, 0, 0, 0 # BIOS CS
.word 0, 0, 0, 0 # BIOS DS
bootsect_es:
.word 0
bootsect_panic:
pushw %cs
popw %ds
cld
leaw bootsect_panic_mess, %si
call prtstr
bootsect_panic_loop:
jmp bootsect_panic_loop
bootsect_panic_mess:
.string "INT15 refuses to access high mem, giving up."
# This routine checks that the keyboard command queue is empty
# (after emptying the output buffers)
#
# Some machines have delusions that the keyboard buffer is always full
# with no keyboard attached...
#
# If there is no keyboard controller, we will usually get 0xff
# to all the reads. With each IO taking a microsecond and
# a timeout of 100,000 iterations, this can take about half a
# second ("delay" == outb to port 0x80). That should be ok,
# and should also be plenty of time for a real keyboard controller
# to empty.
#
empty_8042:
pushl %ecx
movl $100000, %ecx
empty_8042_loop:
decl %ecx
jz empty_8042_end_loop
call delay
inb $0x64, %al # 8042 status port
testb $1, %al # output buffer?
jz no_output
call delay
inb $0x60, %al # read it
jmp empty_8042_loop
no_output:
testb $2, %al # is input buffer full?
jnz empty_8042_loop # yes - loop
empty_8042_end_loop:
popl %ecx
ret
# Read the cmos clock. Return the seconds in al
gettime:
pushw %cx
movb $0x02, %ah
int $0x1a
movb %dh, %al # %dh contains the seconds
andb $0x0f, %al
movb %dh, %ah
movb $0x04, %cl
shrb %cl, %ah
aad
popw %cx
ret
# Delay is needed after doing I/O
delay:
outb %al,$0x80
ret
# Descriptor tables
gdt:
.word 0, 0, 0, 0 # dummy
.word 0, 0, 0, 0 # unused
.word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
.word 0 # base address = 0
.word 0x9A00 # code read/exec
.word 0x00CF # granularity = 4096, 386
# (+5th nibble of limit)
.word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
.word 0 # base address = 0
.word 0x9200 # data read/write
.word 0x00CF # granularity = 4096, 386
# (+5th nibble of limit)
idt_48:
.word 0 # idt limit = 0
.word 0, 0 # idt base = 0L
gdt_48:
.word 0x8000 # gdt limit=2048,
# 256 GDT entries
.word 0, 0 # gdt base (filled in later)
# Include video setup & detection code
#include "video.S"
# Setup signature -- must be last
setup_sig1: .word SIG1
setup_sig2: .word SIG2
# After this point, there is some free space which is used by the video mode
# handling code to store the temporary mode table (not used by the kernel).
modelist:
.text
endtext:
.data
enddata:
.bss
endbss:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -