📄 fork.c
字号:
return 0;
}
tsk->fs = __copy_fs_struct(current->fs);
if (!tsk->fs)
return -1;
return 0;
}
static int count_open_files(struct files_struct *files, int size)
{
int i;
/* Find the last open fd */
for (i = size/(8*sizeof(long)); i > 0; ) {
if (files->open_fds->fds_bits[--i])
break;
}
i = (i+1) * 8 * sizeof(long);
return i;
}
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
struct files_struct *oldf, *newf;
struct file **old_fds, **new_fds;
int open_files, nfds, size, i, error = 0;
/*
* A background process may not have any files ...
*/
oldf = current->files;
if (!oldf)
goto out;
if (clone_flags & CLONE_FILES) {
atomic_inc(&oldf->count);
goto out;
}
tsk->files = NULL;
error = -ENOMEM;
newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
if (!newf)
goto out;
atomic_set(&newf->count, 1);
newf->file_lock = RW_LOCK_UNLOCKED;
newf->next_fd = 0;
newf->max_fds = NR_OPEN_DEFAULT;
newf->max_fdset = __FD_SETSIZE;
newf->close_on_exec = &newf->close_on_exec_init;
newf->open_fds = &newf->open_fds_init;
newf->fd = &newf->fd_array[0];
/* We don't yet have the oldf readlock, but even if the old
fdset gets grown now, we'll only copy up to "size" fds */
size = oldf->max_fdset;
if (size > __FD_SETSIZE) {
newf->max_fdset = 0;
write_lock(&newf->file_lock);
error = expand_fdset(newf, size);
write_unlock(&newf->file_lock);
if (error)
goto out_release;
}
read_lock(&oldf->file_lock);
open_files = count_open_files(oldf, size);
/*
* Check whether we need to allocate a larger fd array.
* Note: we're not a clone task, so the open count won't
* change.
*/
nfds = NR_OPEN_DEFAULT;
if (open_files > nfds) {
read_unlock(&oldf->file_lock);
newf->max_fds = 0;
write_lock(&newf->file_lock);
error = expand_fd_array(newf, open_files);
write_unlock(&newf->file_lock);
if (error)
goto out_release;
nfds = newf->max_fds;
read_lock(&oldf->file_lock);
}
old_fds = oldf->fd;
new_fds = newf->fd;
memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
for (i = open_files; i != 0; i--) {
struct file *f = *old_fds++;
if (f)
get_file(f);
*new_fds++ = f;
}
read_unlock(&oldf->file_lock);
/* compute the remainder to be cleared */
size = (newf->max_fds - open_files) * sizeof(struct file *);
/* This is long word aligned thus could use a optimized version */
memset(new_fds, 0, size);
if (newf->max_fdset > open_files) {
int left = (newf->max_fdset-open_files)/8;
int start = open_files / (8 * sizeof(unsigned long));
memset(&newf->open_fds->fds_bits[start], 0, left);
memset(&newf->close_on_exec->fds_bits[start], 0, left);
}
tsk->files = newf;
error = 0;
out:
return error;
out_release:
free_fdset (newf->close_on_exec, newf->max_fdset);
free_fdset (newf->open_fds, newf->max_fdset);
kmem_cache_free(files_cachep, newf);
goto out;
}
static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
{
struct signal_struct *sig;
if (clone_flags & CLONE_SIGHAND) {
atomic_inc(¤t->sig->count);
return 0;
}
sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);
tsk->sig = sig;
if (!sig)
return -1;
spin_lock_init(&sig->siglock);
atomic_set(&sig->count, 1);
memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));
return 0;
}
static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
{
unsigned long new_flags = p->flags;
new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK);
new_flags |= PF_FORKNOEXEC;
if (!(clone_flags & CLONE_PTRACE))
p->ptrace = 0;
if (clone_flags & CLONE_VFORK)
new_flags |= PF_VFORK;
p->flags = new_flags;
}
/*
* Ok, this is the main fork-routine. It copies the system process
* information (task[nr]) and sets up the necessary registers. It also
* copies the data segment in its entirety. The "stack_start" and
* "stack_top" arguments are simply passed along to the platform
* specific copy_thread() routine. Most platforms ignore stack_top.
* For an example that's using stack_top, see
* arch/ia64/kernel/process.c.
*/
int do_fork(unsigned long clone_flags, unsigned long stack_start,
struct pt_regs *regs, unsigned long stack_size)
{
int retval = -ENOMEM;
struct task_struct *p;
DECLARE_MUTEX_LOCKED(sem);
if (clone_flags & CLONE_PID) {
/* This is only allowed from the boot up thread */
if (current->pid)
return -EPERM;
}
current->vfork_sem = &sem;
p = alloc_task_struct();
if (!p)
goto fork_out;
*p = *current;
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur)
goto bad_fork_free;
atomic_inc(&p->user->__count);
atomic_inc(&p->user->processes);
/*
* Counter increases are protected by
* the kernel lock so nr_threads can't
* increase under us (but it may decrease).
*/
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
get_exec_domain(p->exec_domain);
if (p->binfmt && p->binfmt->module)
__MOD_INC_USE_COUNT(p->binfmt->module);
p->did_exec = 0;
p->swappable = 0;
p->state = TASK_UNINTERRUPTIBLE;
copy_flags(clone_flags, p);
p->pid = get_pid(clone_flags);
p->run_list.next = NULL;
p->run_list.prev = NULL;
if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) {
p->p_opptr = current;
if (!(p->ptrace & PT_PTRACED))
p->p_pptr = current;
}
p->p_cptr = NULL;
init_waitqueue_head(&p->wait_chldexit);
p->vfork_sem = NULL;
spin_lock_init(&p->alloc_lock);
p->sigpending = 0;
init_sigpending(&p->pending);
p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
init_timer(&p->real_timer);
p->real_timer.data = (unsigned long) p;
p->leader = 0; /* session leadership doesn't inherit */
p->tty_old_pgrp = 0;
p->times.tms_utime = p->times.tms_stime = 0;
p->times.tms_cutime = p->times.tms_cstime = 0;
#ifdef CONFIG_SMP
{
int i;
p->has_cpu = 0;
p->processor = current->processor;
/* ?? should we just memset this ?? */
for(i = 0; i < smp_num_cpus; i++)
p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;
spin_lock_init(&p->sigmask_lock);
}
#endif
p->lock_depth = -1; /* -1 = no lock */
p->start_time = jiffies;
retval = -ENOMEM;
/* copy all the process information */
if (copy_files(clone_flags, p))
goto bad_fork_cleanup;
if (copy_fs(clone_flags, p))
goto bad_fork_cleanup_files;
if (copy_sighand(clone_flags, p))
goto bad_fork_cleanup_fs;
if (copy_mm(clone_flags, p))
goto bad_fork_cleanup_sighand;
retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
if (retval)
goto bad_fork_cleanup_sighand;
p->semundo = NULL;
/* Our parent execution domain becomes current domain
These must match for thread signalling to apply */
p->parent_exec_id = p->self_exec_id;
/* ok, now we should be set up.. */
p->swappable = 1;
p->exit_signal = clone_flags & CSIGNAL;
p->pdeath_signal = 0;
/*
* "share" dynamic priority between parent and child, thus the
* total amount of dynamic priorities in the system doesnt change,
* more scheduling fairness. This is only important in the first
* timeslice, on the long run the scheduling behaviour is unchanged.
*/
p->counter = (current->counter + 1) >> 1;
current->counter >>= 1;
if (!current->counter)
current->need_resched = 1;
/*
* Ok, add it to the run-queues and make it
* visible to the rest of the system.
*
* Let it rip!
*/
retval = p->pid;
p->tgid = retval;
INIT_LIST_HEAD(&p->thread_group);
write_lock_irq(&tasklist_lock);
if (clone_flags & CLONE_THREAD) {
p->tgid = current->tgid;
list_add(&p->thread_group, ¤t->thread_group);
}
SET_LINKS(p);
hash_pid(p);
nr_threads++;
write_unlock_irq(&tasklist_lock);
if (p->ptrace & PT_PTRACED)
send_sig(SIGSTOP, p, 1);
wake_up_process(p); /* do this last */
++total_forks;
fork_out:
if ((clone_flags & CLONE_VFORK) && (retval > 0))
down(&sem);
return retval;
bad_fork_cleanup_sighand:
exit_sighand(p);
bad_fork_cleanup_fs:
exit_fs(p); /* blocking */
bad_fork_cleanup_files:
exit_files(p); /* blocking */
bad_fork_cleanup:
put_exec_domain(p->exec_domain);
if (p->binfmt && p->binfmt->module)
__MOD_DEC_USE_COUNT(p->binfmt->module);
bad_fork_cleanup_count:
atomic_dec(&p->user->processes);
free_uid(p->user);
bad_fork_free:
free_task_struct(p);
goto fork_out;
}
/* SLAB cache for signal_struct structures (tsk->sig) */
kmem_cache_t *sigact_cachep;
/* SLAB cache for files_struct structures (tsk->files) */
kmem_cache_t *files_cachep;
/* SLAB cache for fs_struct structures (tsk->fs) */
kmem_cache_t *fs_cachep;
/* SLAB cache for vm_area_struct structures */
kmem_cache_t *vm_area_cachep;
/* SLAB cache for mm_struct structures (tsk->mm) */
kmem_cache_t *mm_cachep;
void __init proc_caches_init(void)
{
sigact_cachep = kmem_cache_create("signal_act",
sizeof(struct signal_struct), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!sigact_cachep)
panic("Cannot create signal action SLAB cache");
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!files_cachep)
panic("Cannot create files SLAB cache");
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!fs_cachep)
panic("Cannot create fs_struct SLAB cache");
vm_area_cachep = kmem_cache_create("vm_area_struct",
sizeof(struct vm_area_struct), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if(!vm_area_cachep)
panic("vma_init: Cannot alloc vm_area_struct SLAB cache");
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if(!mm_cachep)
panic("vma_init: Cannot alloc mm_struct SLAB cache");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -