📄 tr2angvec.m
字号:
%TR2ANGVEC Convert to angle/vector form%% [THETA V] = TR2ANGVEC(M)%% Returns a vector/angle representation of the pose corresponding to M, either a rotation% matrix or the rotation part of a homogeneous transform.% This is a rotation of THETA about the vector V.%% See also: ANGVEC2R, ANGVEC2TR% Copyright (C) 1993-2008, by Peter I. Corke%% This file is part of The Robotics Toolbox for Matlab (RTB).% % RTB is free software: you can redistribute it and/or modify% it under the terms of the GNU Lesser General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % RTB is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU Lesser General Public License for more details.% % You should have received a copy of the GNU Leser General Public License% along with RTB. If not, see <http://www.gnu.org/licenses/>.function [theta, v] = tr2angvec(t) qs = sqrt(trace(t)+1)/2.0; qs kx = t(3,2) - t(2,3); % Oz - Ay ky = t(1,3) - t(3,1); % Ax - Nz kz = t(2,1) - t(1,2); % Ny - Ox if (t(1,1) >= t(2,2)) & (t(1,1) >= t(3,3)) kx1 = t(1,1) - t(2,2) - t(3,3) + 1; % Nx - Oy - Az + 1 ky1 = t(2,1) + t(1,2); % Ny + Ox kz1 = t(3,1) + t(1,3); % Nz + Ax add = (kx >= 0); elseif (t(2,2) >= t(3,3)) kx1 = t(2,1) + t(1,2); % Ny + Ox ky1 = t(2,2) - t(1,1) - t(3,3) + 1; % Oy - Nx - Az + 1 kz1 = t(3,2) + t(2,3); % Oz + Ay add = (ky >= 0); else kx1 = t(3,1) + t(1,3); % Nz + Ax ky1 = t(3,2) + t(2,3); % Oz + Ay kz1 = t(3,3) - t(1,1) - t(2,2) + 1; % Az - Nx - Oy + 1 add = (kz >= 0); end if add kx = kx + kx1; ky = ky + ky1; kz = kz + kz1; else kx = kx - kx1; ky = ky - ky1; kz = kz - kz1; end v = unit([kx ky kz]); theta = 2*acos(qs); if nargout == 0 fprintf('Rotation: %f rad x [%f %f %f]\n', theta, v(1), v(2), v(3)); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -