⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 visjac.html

📁 Robot tool box - provides many functions that are useful in robotics including such things as kinem
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of visjac</title>  <meta name="keywords" content="visjac">  <meta name="description" content="VISJAC	Image feature Jacobian">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="#">simulink</a> &gt; visjac.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for ./simulink&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>visjac</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>VISJAC	Image feature Jacobian</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function J = visjac(uv, camdata, z) </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment">VISJAC    Image feature Jacobian    J = VISJAC(UV, CAMDATA, Z) Return the image-feature Jacobian for point features whose coordinates (u,v) comprise rows of UV.  Z is a vector of the depth of each corresponding point with respect to the camera.  S is the pixel scale factor in m/pixel.</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"></ul><!-- crossreference --><h2><a name="_subfunctions"></a>SUBFUNCTIONS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><ul style="list-style-image:url(../matlabicon.gif)"><li><a href="#_sub1" class="code">function J = visjac_row(camdata, uv, z)</a></li></ul><h2><a name="_source"></a>SOURCE CODE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre>0001 <span class="comment">%VISJAC    Image feature Jacobian</span>0002 <span class="comment">%</span>0003 <span class="comment">%    J = VISJAC(UV, CAMDATA, Z)</span>0004 <span class="comment">%</span>0005 <span class="comment">% Return the image-feature Jacobian for point features whose coordinates</span>0006 <span class="comment">% (u,v) comprise rows of UV.  Z is a vector of the depth of each corresponding</span>0007 <span class="comment">% point with respect to the camera.  S is the pixel scale factor in m/pixel.</span>0008 <span class="comment">%</span>0009 <a name="_sub0" href="#_subfunctions" class="code">function J = visjac(uv, camdata, z)</a>0010 0011     J = [];0012     <span class="keyword">for</span> i=1:numrows(uv),0013         <span class="comment">% convert pixel units to distances at the image plane</span>0014 0015         <span class="comment">% now do the Jacobian proper</span>0016         Jp = <a href="#_sub1" class="code" title="subfunction J = visjac_row(camdata, uv, z)">visjac_row</a>(camdata, uv(i,:), z);0017 0018         <span class="comment">% build up the image Jacobian</span>0019         J = [J; Jp];0020     <span class="keyword">end</span>0021 0022 <a name="_sub1" href="#_subfunctions" class="code">function J = visjac_row(camdata, uv, z)</a>0023 0024     f = camdata(1);0025     ax = camdata(2);    <span class="comment">% pixels/m</span>0026     ay = camdata(3);    <span class="comment">% pixels/m</span>0027     u0 = camdata(4);    <span class="comment">% principal point in pixels</span>0028     v0 = camdata(5);    <span class="comment">% principal point in pixels</span>0029 0030     <span class="comment">% convert pixel units to distances at the image plane</span>0031     uv_p = [1/ax 0 -u0/ax; 0 1/ay -v0/ay] * [uv(:) ; 1];0032     u = uv_p(1);0033     v = uv_p(2);0034 0035     <span class="comment">% now do the Jacobian proper</span>0036     J = [f/z 0   -u/z  -u*v/f        (f^2+u^2)/f -v0037          0   f/z -v/z  -(f^2+v^2)/f  u*v/f        u];0038 0039     <span class="comment">% convert to pixel unit velocities</span>0040     J = diag([ax ay]) * J;</pre></div><hr><address>Generated on Sun 15-Feb-2009 18:09:29 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -