⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oa2tr.html

📁 Robot tool box - provides many functions that are useful in robotics including such things as kinem
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of oa2tr</title>  <meta name="keywords" content="oa2tr">  <meta name="description" content="OA2TR Convert O/A vectors to homogeneous transformation">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="./m2html.css"></head><body><a name="_top"></a><div><a href="./index.html">Home</a> &gt;  <a href="index.html">.</a> &gt; oa2tr.m</div><!--<table width="100%"><tr><td align="left"><a href="./index.html"><img alt="<" border="0" src="./left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for .&nbsp;<img alt=">" border="0" src="./right.png"></a></td></tr></table>--><h1>oa2tr</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="./up.png"></a></h2><div class="box"><strong>OA2TR Convert O/A vectors to homogeneous transformation</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="./up.png"></a></h2><div class="box"><strong>function r = oa2tr(o, a) </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="./up.png"></a></h2><div class="fragment"><pre class="comment">OA2TR Convert O/A vectors to homogeneous transformation     TR = OA2TR(O, A) Returns a homogeneous tranformation for the specified orientation and  approach vectors.  The rotation submatrix is formed from 3 vectors such that R = [N O A] and N = O x A.   The submatrix is guaranteed to be orthonormal so long as O and A are  not parallel. See also: <a href="rpy2tr.html" class="code" title="function T = rpy2tr(roll, pitch, yaw)">RPY2TR</a>, <a href="eul2tr.html" class="code" title="function T = eul2tr(phi, theta, psi)">EUL2TR</a>, <a href="oa2r.html" class="code" title="function r = oa2r(o, a)">OA2R</a></pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="./up.png"></a></h2>This function calls:<ul style="list-style-image:url(./matlabicon.gif)"><li><a href="unit.html" class="code" title="function u = unit(v)">unit</a>	UNIT Unitize a vector</li></ul>This function is called by:<ul style="list-style-image:url(./matlabicon.gif)"></ul><!-- crossreference --><h2><a name="_source"></a>SOURCE CODE <a href="#_top"><img alt="^" border="0" src="./up.png"></a></h2><div class="fragment"><pre>0001 <span class="comment">%OA2TR Convert O/A vectors to homogeneous transformation</span>0002 <span class="comment">%</span>0003 <span class="comment">%     TR = OA2TR(O, A)</span>0004 <span class="comment">%</span>0005 <span class="comment">% Returns a homogeneous tranformation for the specified orientation and</span>0006 <span class="comment">% approach vectors.  The rotation submatrix is formed from 3 vectors such that</span>0007 <span class="comment">% R = [N O A] and N = O x A.</span>0008 <span class="comment">% The submatrix is guaranteed to be orthonormal so long as O and A are</span>0009 <span class="comment">% not parallel.</span>0010 <span class="comment">%</span>0011 <span class="comment">% See also: RPY2TR, EUL2TR, OA2R</span>0012 0013 <span class="comment">% Copyright (C) 1993-2008, by Peter I. Corke</span>0014 <span class="comment">%</span>0015 <span class="comment">% This file is part of The Robotics Toolbox for Matlab (RTB).</span>0016 <span class="comment">%</span>0017 <span class="comment">% RTB is free software: you can redistribute it and/or modify</span>0018 <span class="comment">% it under the terms of the GNU Lesser General Public License as published by</span>0019 <span class="comment">% the Free Software Foundation, either version 3 of the License, or</span>0020 <span class="comment">% (at your option) any later version.</span>0021 <span class="comment">%</span>0022 <span class="comment">% RTB is distributed in the hope that it will be useful,</span>0023 <span class="comment">% but WITHOUT ANY WARRANTY; without even the implied warranty of</span>0024 <span class="comment">% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the</span>0025 <span class="comment">% GNU Lesser General Public License for more details.</span>0026 <span class="comment">%</span>0027 <span class="comment">% You should have received a copy of the GNU Leser General Public License</span>0028 <span class="comment">% along with RTB.  If not, see &lt;http://www.gnu.org/licenses/&gt;.</span>0029 0030 <a name="_sub0" href="#_subfunctions" class="code">function r = oa2tr(o, a)</a>0031     n = cross(o, a);0032     o = cross(a, n);0033     r = [<a href="unit.html" class="code" title="function u = unit(v)">unit</a>(n(:)) <a href="unit.html" class="code" title="function u = unit(v)">unit</a>(o(:)) <a href="unit.html" class="code" title="function u = unit(v)">unit</a>(a(:)) zeros(3,1); 0 0 0 1];</pre></div><hr><address>Generated on Sun 15-Feb-2009 18:09:29 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -