⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 id3.java

📁 数据挖掘分类算法:ID3采用JAVA语言编程实现
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * @throws NoSupportForMissingValuesException if instance has missing values   */  public double[] distributionForInstance(Instance instance)     throws NoSupportForMissingValuesException {    if (instance.hasMissingValue()) {      throw new NoSupportForMissingValuesException("Id3: no missing values, "                                                   + "please.");    }    if (m_Attribute == null) {      return m_Distribution;    } else {       return m_Successors[(int) instance.value(m_Attribute)].        distributionForInstance(instance);    }  }  /**   * Prints the decision tree using the private toString method from below.   *   * @return a textual description of the classifier   */  public String toString() {    if ((m_Distribution == null) && (m_Successors == null)) {      return "Id3: No model built yet.";    }    return "Id3\n\n" + toString(0);  }  /**   * Computes information gain for an attribute.   *   * @param data the data for which info gain is to be computed   * @param att the attribute   * @return the information gain for the given attribute and data   * @throws Exception if computation fails   */  private double computeInfoGain(Instances data, Attribute att)     throws Exception {    double infoGain = computeEntropy(data);    Instances[] splitData = splitData(data, att);    for (int j = 0; j < att.numValues(); j++) {      if (splitData[j].numInstances() > 0) {        infoGain -= ((double) splitData[j].numInstances() /                     (double) data.numInstances()) *          computeEntropy(splitData[j]);      }    }    return infoGain;  }  /**   * Computes the entropy of a dataset.   *    * @param data the data for which entropy is to be computed   * @return the entropy of the data's class distribution   * @throws Exception if computation fails   */  private double computeEntropy(Instances data) throws Exception {    double [] classCounts = new double[data.numClasses()];    Enumeration instEnum = data.enumerateInstances();    while (instEnum.hasMoreElements()) {      Instance inst = (Instance) instEnum.nextElement();      classCounts[(int) inst.classValue()]++;    }    double entropy = 0;    for (int j = 0; j < data.numClasses(); j++) {      if (classCounts[j] > 0) {        entropy -= classCounts[j] * Utils.log2(classCounts[j]);      }    }    entropy /= (double) data.numInstances();    return entropy + Utils.log2(data.numInstances());  }  /**   * Splits a dataset according to the values of a nominal attribute.   *   * @param data the data which is to be split   * @param att the attribute to be used for splitting   * @return the sets of instances produced by the split   */  private Instances[] splitData(Instances data, Attribute att) {    Instances[] splitData = new Instances[att.numValues()];    for (int j = 0; j < att.numValues(); j++) {      splitData[j] = new Instances(data, data.numInstances());    }    Enumeration instEnum = data.enumerateInstances();    while (instEnum.hasMoreElements()) {      Instance inst = (Instance) instEnum.nextElement();      splitData[(int) inst.value(att)].add(inst);    }    for (int i = 0; i < splitData.length; i++) {      splitData[i].compactify();    }    return splitData;  }  /**   * Outputs a tree at a certain level.   *   * @param level the level at which the tree is to be printed   * @return the tree as string at the given level   */  private String toString(int level) {    StringBuffer text = new StringBuffer();        if (m_Attribute == null) {      if (Instance.isMissingValue(m_ClassValue)) {        text.append(": null");      } else {        text.append(": " + m_ClassAttribute.value((int) m_ClassValue));      }     } else {      for (int j = 0; j < m_Attribute.numValues(); j++) {        text.append("\n");        for (int i = 0; i < level; i++) {          text.append("|  ");        }        text.append(m_Attribute.name() + " = " + m_Attribute.value(j));        text.append(m_Successors[j].toString(level + 1));      }    }    return text.toString();  }  /**   * Adds this tree recursively to the buffer.   *    * @param id          the unqiue id for the method   * @param buffer      the buffer to add the source code to   * @return            the last ID being used   * @throws Exception  if something goes wrong   */  protected int toSource(int id, StringBuffer buffer) throws Exception {    int                 result;    int                 i;    int                 newID;    StringBuffer[]      subBuffers;        buffer.append("\n");    buffer.append("  protected static double node" + id + "(Object[] i) {\n");        // leaf?    if (m_Attribute == null) {      result = id;      if (Double.isNaN(m_ClassValue))        buffer.append("    return Double.NaN;");      else        buffer.append("    return " + m_ClassValue + ";");      if (m_ClassAttribute != null)        buffer.append(" // " + m_ClassAttribute.value((int) m_ClassValue));      buffer.append("\n");      buffer.append("  }\n");    }    else {      buffer.append("    // " + m_Attribute.name() + "\n");            // subtree calls      subBuffers = new StringBuffer[m_Attribute.numValues()];      newID      = id;      for (i = 0; i < m_Attribute.numValues(); i++) {        newID++;        buffer.append("    ");        if (i > 0)          buffer.append("else ");        buffer.append("if (((String) i[" + m_Attribute.index() + "]).equals(\"" + m_Attribute.value(i) + "\"))\n");        buffer.append("      return node" + newID + "(i);\n");        subBuffers[i] = new StringBuffer();        newID         = m_Successors[i].toSource(newID, subBuffers[i]);      }      buffer.append("    else\n");      buffer.append("      throw new IllegalArgumentException(\"Value '\" + i[" + m_Attribute.index() + "] + \"' is not allowed!\");\n");      buffer.append("  }\n");      // output subtree code      for (i = 0; i < m_Attribute.numValues(); i++) {        buffer.append(subBuffers[i].toString());      }      subBuffers = null;            result = newID;    }        return result;  }    /**   * Returns a string that describes the classifier as source. The   * classifier will be contained in a class with the given name (there may   * be auxiliary classes),   * and will contain a method with the signature:   * <pre><code>   * public static double classify(Object[] i);   * </code></pre>   * where the array <code>i</code> contains elements that are either   * Double, String, with missing values represented as null. The generated   * code is public domain and comes with no warranty. <br/>   * Note: works only if class attribute is the last attribute in the dataset.   *   * @param className the name that should be given to the source class.   * @return the object source described by a string   * @throws Exception if the souce can't be computed   */  public String toSource(String className) throws Exception {    StringBuffer        result;    int                 id;        result = new StringBuffer();    result.append("class " + className + " {\n");    result.append("  public static double classify(Object[] i) {\n");    id = 0;    result.append("    return node" + id + "(i);\n");    result.append("  }\n");    toSource(id, result);    result.append("}\n");    return result.toString();  }    /**   * Returns the revision string.   *    * @return		the revision   */  public String getRevision() {    return RevisionUtils.extract("$Revision: 1.23 $");  }  /**   * Main method.   *   * @param args the options for the classifier   */  public static void main(String[] args) {    runClassifier(new Id3(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -