📄 geneticsearch.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * GeneticSearch.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.bayes.net.search.global;import weka.classifiers.bayes.BayesNet;import weka.classifiers.bayes.net.ParentSet;import weka.core.Instances;import weka.core.Option;import weka.core.RevisionHandler;import weka.core.RevisionUtils;import weka.core.Utils;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * This Bayes Network learning algorithm uses genetic search for finding a well scoring Bayes network structure. Genetic search works by having a population of Bayes network structures and allow them to mutate and apply cross over to get offspring. The best network structure found during the process is returned. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -L <integer> * Population size</pre> * * <pre> -A <integer> * Descendant population size</pre> * * <pre> -U <integer> * Number of runs</pre> * * <pre> -M * Use mutation. * (default true)</pre> * * <pre> -C * Use cross-over. * (default true)</pre> * * <pre> -O * Use tournament selection (true) or maximum subpopulatin (false). * (default false)</pre> * * <pre> -R <seed> * Random number seed</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.5 $ */public class GeneticSearch extends GlobalScoreSearchAlgorithm { /** for serialization */ static final long serialVersionUID = 4236165533882462203L; /** number of runs **/ int m_nRuns = 10; /** size of population **/ int m_nPopulationSize = 10; /** size of descendant population **/ int m_nDescendantPopulationSize = 100; /** use cross-over? **/ boolean m_bUseCrossOver = true; /** use mutation? **/ boolean m_bUseMutation = true; /** use tournament selection or take best sub-population **/ boolean m_bUseTournamentSelection = false; /** random number seed **/ int m_nSeed = 1; /** random number generator **/ Random m_random = null; /** used in BayesNetRepresentation for efficiently determining * whether a number is square */ static boolean [] g_bIsSquare; class BayesNetRepresentation implements RevisionHandler { /** number of nodes in network **/ int m_nNodes = 0; /** bit representation of parent sets * m_bits[iTail + iHead * m_nNodes] represents arc iTail->iHead */ boolean [] m_bits; /** score of represented network structure **/ double m_fScore = 0.0f; /** * return score of represented network structure * * @return the score */ public double getScore() { return m_fScore; } // getScore /** * c'tor * * @param nNodes the number of nodes */ BayesNetRepresentation (int nNodes) { m_nNodes = nNodes; } // c'tor /** initialize with a random structure by randomly placing * m_nNodes arcs. */ public void randomInit() { do { m_bits = new boolean [m_nNodes * m_nNodes]; for (int i = 0; i < m_nNodes; i++) { int iPos; do { iPos = m_random.nextInt(m_nNodes * m_nNodes); } while (isSquare(iPos)); m_bits[iPos] = true; } } while (hasCycles()); calcGlobalScore(); } /** calculate score of current network representation * As a side effect, the parent sets are set */ void calcGlobalScore() { // clear current network for (int iNode = 0; iNode < m_nNodes; iNode++) { ParentSet parentSet = m_BayesNet.getParentSet(iNode); while (parentSet.getNrOfParents() > 0) { parentSet.deleteLastParent(m_BayesNet.m_Instances); } } // insert arrows for (int iNode = 0; iNode < m_nNodes; iNode++) { ParentSet parentSet = m_BayesNet.getParentSet(iNode); for (int iNode2 = 0; iNode2 < m_nNodes; iNode2++) { if (m_bits[iNode2 + iNode * m_nNodes]) { parentSet.addParent(iNode2, m_BayesNet.m_Instances); } } } // calc score try { m_fScore = calcScore(m_BayesNet); } catch (Exception e) { // ignore } } // calcScore /** check whether there are cycles in the network * * @return true if a cycle is found, false otherwise */ public boolean hasCycles() { // check for cycles boolean[] bDone = new boolean[m_nNodes]; for (int iNode = 0; iNode < m_nNodes; iNode++) { // find a node for which all parents are 'done' boolean bFound = false; for (int iNode2 = 0; !bFound && iNode2 < m_nNodes; iNode2++) { if (!bDone[iNode2]) { boolean bHasNoParents = true; for (int iParent = 0; iParent < m_nNodes; iParent++) { if (m_bits[iParent + iNode2 * m_nNodes] && !bDone[iParent]) { bHasNoParents = false; } } if (bHasNoParents) { bDone[iNode2] = true; bFound = true; } } } if (!bFound) { return true; } } return false; } // hasCycles /** create clone of current object * @return cloned object */ BayesNetRepresentation copy() { BayesNetRepresentation b = new BayesNetRepresentation(m_nNodes); b.m_bits = new boolean [m_bits.length]; for (int i = 0; i < m_nNodes * m_nNodes; i++) { b.m_bits[i] = m_bits[i]; } b.m_fScore = m_fScore; return b; } // copy /** Apply mutation operation to BayesNet * Calculate score and as a side effect sets BayesNet parent sets. */ void mutate() { // flip a bit do { int iBit; do { iBit = m_random.nextInt(m_nNodes * m_nNodes); } while (isSquare(iBit)); m_bits[iBit] = !m_bits[iBit]; } while (hasCycles()); calcGlobalScore(); } // mutate /** Apply cross-over operation to BayesNet * Calculate score and as a side effect sets BayesNet parent sets. * @param other BayesNetRepresentation to cross over with */ void crossOver(BayesNetRepresentation other) { boolean [] bits = new boolean [m_bits.length]; for (int i = 0; i < m_bits.length; i++) { bits[i] = m_bits[i]; } int iCrossOverPoint = m_bits.length; do { // restore to original state for (int i = iCrossOverPoint; i < m_bits.length; i++) { m_bits[i] = bits[i]; } // take all bits from cross-over points onwards iCrossOverPoint = m_random.nextInt(m_bits.length); for (int i = iCrossOverPoint; i < m_bits.length; i++) { m_bits[i] = other.m_bits[i]; } } while (hasCycles()); calcGlobalScore(); } // crossOver /** check if number is square and initialize g_bIsSquare structure * if necessary * @param nNum number to check (should be below m_nNodes * m_nNodes) * @return true if number is square */ boolean isSquare(int nNum) { if (g_bIsSquare == null || g_bIsSquare.length < nNum) { g_bIsSquare = new boolean [m_nNodes * m_nNodes]; for (int i = 0; i < m_nNodes; i++) { g_bIsSquare[i * m_nNodes + i] = true; } } return g_bIsSquare[nNum]; } // isSquare /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.5 $"); } } // class BayesNetRepresentation /** * search determines the network structure/graph of the network * with a genetic search algorithm. * * @param bayesNet the network to search * @param instances the instances to use * @throws Exception if population size doesn fit or neither cross-over or mutation was chosen */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { // sanity check if (getDescendantPopulationSize() < getPopulationSize()) { throw new Exception ("Descendant PopulationSize should be at least Population Size"); } if (!getUseCrossOver() && !getUseMutation()) { throw new Exception ("At least one of mutation or cross-over should be used"); } m_random = new Random(m_nSeed); // keeps track of best structure found so far BayesNet bestBayesNet; // keeps track of score pf best structure found so far double fBestScore = calcScore(bayesNet); // initialize bestBayesNet bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); // initialize population BayesNetRepresentation [] population = new BayesNetRepresentation [getPopulationSize()]; for (int i = 0; i < getPopulationSize(); i++) { population[i] = new BayesNetRepresentation (instances.numAttributes()); population[i].randomInit(); if (population[i].getScore() > fBestScore) { copyParentSets(bestBayesNet, bayesNet); fBestScore = population[i].getScore(); } } // go do the search for (int iRun = 0; iRun < m_nRuns; iRun++) { // create descendants BayesNetRepresentation [] descendantPopulation = new BayesNetRepresentation [getDescendantPopulationSize()]; for (int i = 0; i < getDescendantPopulationSize(); i++) { descendantPopulation[i] = population[m_random.nextInt(getPopulationSize())].copy(); if (getUseMutation()) { if (getUseCrossOver() && m_random.nextBoolean()) { descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); } else { descendantPopulation[i].mutate(); } } else { // use crossover descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); } if (descendantPopulation[i].getScore() > fBestScore) { copyParentSets(bestBayesNet, bayesNet); fBestScore = descendantPopulation[i].getScore(); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -