📄 hillclimber.java
字号:
* up to the maximum nr of parents). * @throws Exception if something goes wrong */ Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { int nNrOfAtts = instances.numAttributes(); // find best arc to add for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) { for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) { Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); double fScore = calcScoreWithExtraParent(oOperation.m_nHead, oOperation.m_nTail); if (fScore > oBestOperation.m_fScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fScore = fScore; } } } } } } return oBestOperation; } // findBestArcToAdd /** * find best (or least bad) arc deletion operation * * @param bayesNet Bayes network to delete arc from * @param instances data set * @param oBestOperation * @return Operation containing best arc to delete, or null if no deletion can be made * (happens when there is no arc in the network yet). * @throws Exception of something goes wrong */ Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { int nNrOfAtts = instances.numAttributes(); // find best arc to delete for (int iNode = 0; iNode < nNrOfAtts; iNode++) { ParentSet parentSet = bayesNet.getParentSet(iNode); for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL); double fScore = calcScoreWithMissingParent(oOperation.m_nHead, oOperation.m_nTail); if (fScore > oBestOperation.m_fScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fScore = fScore; } } } } return oBestOperation; } // findBestArcToDelete /** * find best (or least bad) arc reversal operation * * @param bayesNet Bayes network to reverse arc in * @param instances data set * @param oBestOperation * @return Operation containing best arc to reverse, or null if no reversal is allowed * (happens if there is no arc in the network yet, or when any such reversal introduces * a cycle). * @throws Exception if something goes wrong */ Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { int nNrOfAtts = instances.numAttributes(); // find best arc to reverse for (int iNode = 0; iNode < nNrOfAtts; iNode++) { ParentSet parentSet = bayesNet.getParentSet(iNode); for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { int iTail = parentSet.getParent(iParent); // is reversal allowed? if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) { // go check if reversal results in the best step forward Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE); double fScore = calcScoreWithReversedParent(oOperation.m_nHead, oOperation.m_nTail); if (fScore > oBestOperation.m_fScore) { if (isNotTabu(oOperation)) { oBestOperation = oOperation; oBestOperation.m_fScore = fScore; } } } } } return oBestOperation; } // findBestArcToReverse /** * Sets the max number of parents * * @param nMaxNrOfParents the max number of parents */ public void setMaxNrOfParents(int nMaxNrOfParents) { m_nMaxNrOfParents = nMaxNrOfParents; } /** * Gets the max number of parents. * * @return the max number of parents */ public int getMaxNrOfParents() { return m_nMaxNrOfParents; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>")); newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -P <nr of parents> * Maximum number of parents</pre> * * <pre> -R * Use arc reversal operation. * (default false)</pre> * * <pre> -N * Initial structure is empty (instead of Naive Bayes)</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setUseArcReversal(Utils.getFlag('R', options)); setInitAsNaiveBayes (!(Utils.getFlag('N', options))); String sMaxNrOfParents = Utils.getOption('P', options); if (sMaxNrOfParents.length() != 0) { setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents)); } else { setMaxNrOfParents(100000); } super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[7 + superOptions.length]; int current = 0; if (getUseArcReversal()) { options[current++] = "-R"; } if (!getInitAsNaiveBayes()) { options[current++] = "-N"; } options[current++] = "-P"; options[current++] = "" + m_nMaxNrOfParents; // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * Sets whether to init as naive bayes * * @param bInitAsNaiveBayes whether to init as naive bayes */ public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) { m_bInitAsNaiveBayes = bInitAsNaiveBayes; } /** * Gets whether to init as naive bayes * * @return whether to init as naive bayes */ public boolean getInitAsNaiveBayes() { return m_bInitAsNaiveBayes; } /** get use the arc reversal operation * @return whether the arc reversal operation should be used */ public boolean getUseArcReversal() { return m_bUseArcReversal; } // getUseArcReversal /** set use the arc reversal operation * @param bUseArcReversal whether the arc reversal operation should be used */ public void setUseArcReversal(boolean bUseArcReversal) { m_bUseArcReversal = bUseArcReversal; } // setUseArcReversal /** * This will return a string describing the search algorithm. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses a hill climbing algorithm " + "adding, deleting and reversing arcs. The search is not restricted by an order " + "on the variables (unlike K2). The difference with B and B2 is that this hill " + "climber also considers arrows part of the naive Bayes structure for deletion."; } // globalInfo /** * @return a string to describe the Use Arc Reversal option. */ public String useArcReversalTipText() { return "When set to true, the arc reversal operation is used in the search."; } // useArcReversalTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); }} // HillClimber
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -