📄 proc.c
字号:
#include "types.h"#include "defs.h"#include "param.h"#include "mmu.h"#include "x86.h"#include "proc.h"#include "spinlock.h"struct spinlock proc_table_lock;struct proc proc[NPROC];static struct proc *initproc;int nextpid = 1;extern void forkret(void);extern void forkret1(struct trapframe*);voidpinit(void){ initlock(&proc_table_lock, "proc_table");}// Look in the process table for an UNUSED proc.// If found, change state to EMBRYO and return it.// Otherwise return 0.static struct proc*allocproc(void){ int i; struct proc *p; acquire(&proc_table_lock); for(i = 0; i < NPROC; i++){ p = &proc[i]; if(p->state == UNUSED){ p->state = EMBRYO; p->pid = nextpid++; release(&proc_table_lock); return p; } } release(&proc_table_lock); return 0;}// Grow current process's memory by n bytes.// Return old size on success, -1 on failure.intgrowproc(int n){ char *newmem; newmem = kalloc(cp->sz + n); if(newmem == 0) return -1; memmove(newmem, cp->mem, cp->sz); memset(newmem + cp->sz, 0, n); kfree(cp->mem, cp->sz); cp->mem = newmem; cp->sz += n; setupsegs(cp); return cp->sz - n;}// Set up CPU's segment descriptors and task state for a given process.// If p==0, set up for "idle" state for when scheduler() is running.voidsetupsegs(struct proc *p){ struct cpu *c; pushcli(); c = &cpus[cpu()]; c->ts.ss0 = SEG_KDATA << 3; if(p) c->ts.esp0 = (uint)(p->kstack + KSTACKSIZE); else c->ts.esp0 = 0xffffffff; c->gdt[0] = SEG_NULL; c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0x100000 + 64*1024-1, 0); c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); c->gdt[SEG_TSS] = SEG16(STS_T32A, (uint)&c->ts, sizeof(c->ts)-1, 0); c->gdt[SEG_TSS].s = 0; if(p){ c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (uint)p->mem, p->sz-1, DPL_USER); c->gdt[SEG_UDATA] = SEG(STA_W, (uint)p->mem, p->sz-1, DPL_USER); } else { c->gdt[SEG_UCODE] = SEG_NULL; c->gdt[SEG_UDATA] = SEG_NULL; } lgdt(c->gdt, sizeof(c->gdt)); ltr(SEG_TSS << 3); popcli();}// Create a new process copying p as the parent.// Sets up stack to return as if from system call.// Caller must set state of returned proc to RUNNABLE.struct proc*copyproc(struct proc *p){ int i; struct proc *np; // Allocate process. if((np = allocproc()) == 0) return 0; // Allocate kernel stack. if((np->kstack = kalloc(KSTACKSIZE)) == 0){ np->state = UNUSED; return 0; } np->tf = (struct trapframe*)(np->kstack + KSTACKSIZE) - 1; if(p){ // Copy process state from p. np->parent = p; memmove(np->tf, p->tf, sizeof(*np->tf)); np->sz = p->sz; if((np->mem = kalloc(np->sz)) == 0){ kfree(np->kstack, KSTACKSIZE); np->kstack = 0; np->state = UNUSED; np->parent = 0; return 0; } memmove(np->mem, p->mem, np->sz); for(i = 0; i < NOFILE; i++) if(p->ofile[i]) np->ofile[i] = filedup(p->ofile[i]); np->cwd = idup(p->cwd); } // Set up new context to start executing at forkret (see below). memset(&np->context, 0, sizeof(np->context)); np->context.eip = (uint)forkret; np->context.esp = (uint)np->tf; // Clear %eax so that fork system call returns 0 in child. np->tf->eax = 0; return np;}// Set up first user process.voiduserinit(void){ struct proc *p; extern uchar _binary_initcode_start[], _binary_initcode_size[]; p = copyproc(0); p->sz = PAGE; p->mem = kalloc(p->sz); p->cwd = namei("/"); memset(p->tf, 0, sizeof(*p->tf)); p->tf->cs = (SEG_UCODE << 3) | DPL_USER; p->tf->ds = (SEG_UDATA << 3) | DPL_USER; p->tf->es = p->tf->ds; p->tf->ss = p->tf->ds; p->tf->eflags = FL_IF; p->tf->esp = p->sz; // Make return address readable; needed for some gcc. p->tf->esp -= 4; *(uint*)(p->mem + p->tf->esp) = 0xefefefef; // On entry to user space, start executing at beginning of initcode.S. p->tf->eip = 0; memmove(p->mem, _binary_initcode_start, (int)_binary_initcode_size); safestrcpy(p->name, "initcode", sizeof(p->name)); p->state = RUNNABLE; initproc = p;}// Return currently running process.struct proc*curproc(void){ struct proc *p; pushcli(); p = cpus[cpu()].curproc; popcli(); return p;}// Per-CPU process scheduler.// Each CPU calls scheduler() after setting itself up.// Scheduler never returns. It loops, doing:// - choose a process to run// - swtch to start running that process// - eventually that process transfers control// via swtch back to the scheduler.voidscheduler(void){ struct proc *p; struct cpu *c; int i; c = &cpus[cpu()]; for(;;){ // Enable interrupts on this processor. sti(); // Loop over process table looking for process to run. acquire(&proc_table_lock); for(i = 0; i < NPROC; i++){ p = &proc[i]; if(p->state != RUNNABLE) continue; // Switch to chosen process. It is the process's job // to release proc_table_lock and then reacquire it // before jumping back to us. c->curproc = p; setupsegs(p); p->state = RUNNING; swtch(&c->context, &p->context); // Process is done running for now. // It should have changed its p->state before coming back. c->curproc = 0; setupsegs(0); } release(&proc_table_lock); }}// Enter scheduler. Must already hold proc_table_lock// and have changed curproc[cpu()]->state.voidsched(void){ if(read_eflags()&FL_IF) panic("sched interruptible"); if(cp->state == RUNNING) panic("sched running"); if(!holding(&proc_table_lock)) panic("sched proc_table_lock"); if(cpus[cpu()].ncli != 1) panic("sched locks"); swtch(&cp->context, &cpus[cpu()].context);}// Give up the CPU for one scheduling round.voidyield(void){ acquire(&proc_table_lock); cp->state = RUNNABLE; sched(); release(&proc_table_lock);}// A fork child's very first scheduling by scheduler()// will swtch here. "Return" to user space.voidforkret(void){ // Still holding proc_table_lock from scheduler. release(&proc_table_lock); // Jump into assembly, never to return. forkret1(cp->tf);}// Atomically release lock and sleep on chan.// Reacquires lock when reawakened.voidsleep(void *chan, struct spinlock *lk){ if(cp == 0) panic("sleep"); if(lk == 0) panic("sleep without lk"); // Must acquire proc_table_lock in order to // change p->state and then call sched. // Once we hold proc_table_lock, we can be // guaranteed that we won't miss any wakeup // (wakeup runs with proc_table_lock locked), // so it's okay to release lk. if(lk != &proc_table_lock){ acquire(&proc_table_lock); release(lk); } // Go to sleep. cp->chan = chan; cp->state = SLEEPING; sched(); // Tidy up. cp->chan = 0; // Reacquire original lock. if(lk != &proc_table_lock){ release(&proc_table_lock); acquire(lk); }}// Wake up all processes sleeping on chan.// Proc_table_lock must be held.static voidwakeup1(void *chan){ struct proc *p; for(p = proc; p < &proc[NPROC]; p++) if(p->state == SLEEPING && p->chan == chan) p->state = RUNNABLE;}// Wake up all processes sleeping on chan.voidwakeup(void *chan){ acquire(&proc_table_lock); wakeup1(chan); release(&proc_table_lock);}// Kill the process with the given pid.// Process won't actually exit until it returns// to user space (see trap in trap.c).intkill(int pid){ struct proc *p; acquire(&proc_table_lock); for(p = proc; p < &proc[NPROC]; p++){ if(p->pid == pid){ p->killed = 1; // Wake process from sleep if necessary. if(p->state == SLEEPING) p->state = RUNNABLE; release(&proc_table_lock); return 0; } } release(&proc_table_lock); return -1;}// Exit the current process. Does not return.// Exited processes remain in the zombie state// until their parent calls wait() to find out they exited.voidexit(void){ struct proc *p; int fd; if(cp == initproc) panic("init exiting"); // Close all open files. for(fd = 0; fd < NOFILE; fd++){ if(cp->ofile[fd]){ fileclose(cp->ofile[fd]); cp->ofile[fd] = 0; } } iput(cp->cwd); cp->cwd = 0; acquire(&proc_table_lock); // Parent might be sleeping in wait(). wakeup1(cp->parent); // Pass abandoned children to init. for(p = proc; p < &proc[NPROC]; p++){ if(p->parent == cp){ p->parent = initproc; if(p->state == ZOMBIE) wakeup1(initproc); } } // Jump into the scheduler, never to return. cp->killed = 0; cp->state = ZOMBIE; sched(); panic("zombie exit");}// Wait for a child process to exit and return its pid.// Return -1 if this process has no children.intwait(void){ struct proc *p; int i, havekids, pid; acquire(&proc_table_lock); for(;;){ // Scan through table looking for zombie children. havekids = 0; for(i = 0; i < NPROC; i++){ p = &proc[i]; if(p->state == UNUSED) continue; if(p->parent == cp){ if(p->state == ZOMBIE){ // Found one. kfree(p->mem, p->sz); kfree(p->kstack, KSTACKSIZE); pid = p->pid; p->state = UNUSED; p->pid = 0; p->parent = 0; p->name[0] = 0; release(&proc_table_lock); return pid; } havekids = 1; } } // No point waiting if we don't have any children. if(!havekids || cp->killed){ release(&proc_table_lock); return -1; } // Wait for children to exit. (See wakeup1 call in proc_exit.) sleep(cp, &proc_table_lock); }}// Print a process listing to console. For debugging.// Runs when user types ^P on console.// No lock to avoid wedging a stuck machine further.voidprocdump(void){ static char *states[] = { [UNUSED] "unused", [EMBRYO] "embryo", [SLEEPING] "sleep ", [RUNNABLE] "runble", [RUNNING] "run ", [ZOMBIE] "zombie" }; int i, j; struct proc *p; char *state; uint pc[10]; for(i = 0; i < NPROC; i++){ p = &proc[i]; if(p->state == UNUSED) continue; if(p->state >= 0 && p->state < NELEM(states) && states[p->state]) state = states[p->state]; else state = "???"; cprintf("%d %s %s", p->pid, state, p->name); if(p->state == SLEEPING){ getcallerpcs((uint*)p->context.ebp+2, pc); for(j=0; j<10 && pc[j] != 0; j++) cprintf(" %p", pc[j]); } cprintf("\n"); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -