📄 fs.c
字号:
// File system implementation. Four layers:// + Blocks: allocator for raw disk blocks.// + Files: inode allocator, reading, writing, metadata.// + Directories: inode with special contents (list of other inodes!)// + Names: paths like /usr/rtm/xv6/fs.c for convenient naming.//// Disk layout is: superblock, inodes, block in-use bitmap, data blocks.//// This file contains the low-level file system manipulation // routines. The (higher-level) system call implementations// are in sysfile.c.#include "types.h"#include "defs.h"#include "param.h"#include "stat.h"#include "mmu.h"#include "proc.h"#include "spinlock.h"#include "buf.h"#include "fs.h"#include "fsvar.h"#include "dev.h"#define min(a, b) ((a) < (b) ? (a) : (b))static void itrunc(struct inode*);// Read the super block.static voidreadsb(int dev, struct superblock *sb){ struct buf *bp; bp = bread(dev, 1); memmove(sb, bp->data, sizeof(*sb)); brelse(bp);}// Zero a block.static voidbzero(int dev, int bno){ struct buf *bp; bp = bread(dev, bno); memset(bp->data, 0, BSIZE); bwrite(bp); brelse(bp);}// Blocks. // Allocate a disk block.static uintballoc(uint dev){ int b, bi, m; struct buf *bp; struct superblock sb; bp = 0; readsb(dev, &sb); for(b = 0; b < sb.size; b += BPB){ bp = bread(dev, BBLOCK(b, sb.ninodes)); for(bi = 0; bi < BPB; bi++){ m = 1 << (bi % 8); if((bp->data[bi/8] & m) == 0){ // Is block free? bp->data[bi/8] |= m; // Mark block in use on disk. bwrite(bp); brelse(bp); return b + bi; } } brelse(bp); } panic("balloc: out of blocks");}// Free a disk block.static voidbfree(int dev, uint b){ struct buf *bp; struct superblock sb; int bi, m; bzero(dev, b); readsb(dev, &sb); bp = bread(dev, BBLOCK(b, sb.ninodes)); bi = b % BPB; m = 1 << (bi % 8); if((bp->data[bi/8] & m) == 0) panic("freeing free block"); bp->data[bi/8] &= ~m; // Mark block free on disk. bwrite(bp); brelse(bp);}// Inodes.//// An inode is a single, unnamed file in the file system.// The inode disk structure holds metadata (the type, device numbers,// and data size) along with a list of blocks where the associated// data can be found.//// The inodes are laid out sequentially on disk immediately after// the superblock. The kernel keeps a cache of the in-use// on-disk structures to provide a place for synchronizing access// to inodes shared between multiple processes.// // ip->ref counts the number of pointer references to this cached// inode; references are typically kept in struct file and in cp->cwd.// When ip->ref falls to zero, the inode is no longer cached.// It is an error to use an inode without holding a reference to it.//// Processes are only allowed to read and write inode// metadata and contents when holding the inode's lock,// represented by the I_BUSY flag in the in-memory copy.// Because inode locks are held during disk accesses, // they are implemented using a flag rather than with// spin locks. Callers are responsible for locking// inodes before passing them to routines in this file; leaving// this responsibility with the caller makes it possible for them// to create arbitrarily-sized atomic operations.//// To give maximum control over locking to the callers, // the routines in this file that return inode pointers // return pointers to *unlocked* inodes. It is the callers'// responsibility to lock them before using them. A non-zero// ip->ref keeps these unlocked inodes in the cache.struct { struct spinlock lock; struct inode inode[NINODE];} icache;voidiinit(void){ initlock(&icache.lock, "icache.lock");}// Find the inode with number inum on device dev// and return the in-memory copy.static struct inode*iget(uint dev, uint inum){ struct inode *ip, *empty; acquire(&icache.lock); // Try for cached inode. empty = 0; for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++){ if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){ ip->ref++; release(&icache.lock); return ip; } if(empty == 0 && ip->ref == 0) // Remember empty slot. empty = ip; } // Allocate fresh inode. if(empty == 0) panic("iget: no inodes"); ip = empty; ip->dev = dev; ip->inum = inum; ip->ref = 1; ip->flags = 0; release(&icache.lock); return ip;}// Increment reference count for ip.// Returns ip to enable ip = idup(ip1) idiom.struct inode*idup(struct inode *ip){ acquire(&icache.lock); ip->ref++; release(&icache.lock); return ip;}// Lock the given inode.voidilock(struct inode *ip){ struct buf *bp; struct dinode *dip; if(ip == 0 || ip->ref < 1) panic("ilock"); acquire(&icache.lock); while(ip->flags & I_BUSY) sleep(ip, &icache.lock); ip->flags |= I_BUSY; release(&icache.lock); if(!(ip->flags & I_VALID)){ bp = bread(ip->dev, IBLOCK(ip->inum)); dip = (struct dinode*)bp->data + ip->inum%IPB; ip->type = dip->type; ip->major = dip->major; ip->minor = dip->minor; ip->nlink = dip->nlink; ip->size = dip->size; memmove(ip->addrs, dip->addrs, sizeof(ip->addrs)); brelse(bp); ip->flags |= I_VALID; if(ip->type == 0) panic("ilock: no type"); }}// Unlock the given inode.voidiunlock(struct inode *ip){ if(ip == 0 || !(ip->flags & I_BUSY) || ip->ref < 1) panic("iunlock"); acquire(&icache.lock); ip->flags &= ~I_BUSY; wakeup(ip); release(&icache.lock);}// Caller holds reference to unlocked ip. Drop reference.voidiput(struct inode *ip){ acquire(&icache.lock); if(ip->ref == 1 && (ip->flags & I_VALID) && ip->nlink == 0){ // inode is no longer used: truncate and free inode. if(ip->flags & I_BUSY) panic("iput busy"); ip->flags |= I_BUSY; release(&icache.lock); itrunc(ip); ip->type = 0; iupdate(ip); acquire(&icache.lock); ip->flags &= ~I_BUSY; wakeup(ip); } ip->ref--; release(&icache.lock);}// Common idiom: unlock, then put.voidiunlockput(struct inode *ip){ iunlock(ip); iput(ip);}// Allocate a new inode with the given type on device dev.struct inode*ialloc(uint dev, short type){ int inum; struct buf *bp; struct dinode *dip; struct superblock sb; readsb(dev, &sb); for(inum = 1; inum < sb.ninodes; inum++){ // loop over inode blocks bp = bread(dev, IBLOCK(inum)); dip = (struct dinode*)bp->data + inum%IPB; if(dip->type == 0){ // a free inode memset(dip, 0, sizeof(*dip)); dip->type = type; bwrite(bp); // mark it allocated on the disk brelse(bp); return iget(dev, inum); } brelse(bp); } panic("ialloc: no inodes");}// Copy inode, which has changed, from memory to disk.voidiupdate(struct inode *ip){ struct buf *bp; struct dinode *dip; bp = bread(ip->dev, IBLOCK(ip->inum)); dip = (struct dinode*)bp->data + ip->inum%IPB; dip->type = ip->type; dip->major = ip->major; dip->minor = ip->minor; dip->nlink = ip->nlink; dip->size = ip->size; memmove(dip->addrs, ip->addrs, sizeof(ip->addrs)); bwrite(bp); brelse(bp);}// Inode contents//// The contents (data) associated with each inode is stored// in a sequence of blocks on the disk. The first NDIRECT blocks// are listed in ip->addrs[]. The next NINDIRECT blocks are // listed in the block ip->addrs[INDIRECT].// Return the disk block address of the nth block in inode ip.// If there is no such block, alloc controls whether one is allocated.static uintbmap(struct inode *ip, uint bn, int alloc){ uint addr, *a; struct buf *bp; if(bn < NDIRECT){ if((addr = ip->addrs[bn]) == 0){ if(!alloc) return -1; ip->addrs[bn] = addr = balloc(ip->dev); } return addr; } bn -= NDIRECT; if(bn < NINDIRECT){ // Load indirect block, allocating if necessary. if((addr = ip->addrs[INDIRECT]) == 0){ if(!alloc) return -1; ip->addrs[INDIRECT] = addr = balloc(ip->dev); } bp = bread(ip->dev, addr); a = (uint*)bp->data; if((addr = a[bn]) == 0){ if(!alloc){ brelse(bp); return -1; } a[bn] = addr = balloc(ip->dev); bwrite(bp); } brelse(bp); return addr; } panic("bmap: out of range");}// Truncate inode (discard contents).static voiditrunc(struct inode *ip){ int i, j; struct buf *bp; uint *a; for(i = 0; i < NDIRECT; i++){ if(ip->addrs[i]){ bfree(ip->dev, ip->addrs[i]); ip->addrs[i] = 0; } } if(ip->addrs[INDIRECT]){ bp = bread(ip->dev, ip->addrs[INDIRECT]); a = (uint*)bp->data; for(j = 0; j < NINDIRECT; j++){ if(a[j]) bfree(ip->dev, a[j]); } brelse(bp); ip->addrs[INDIRECT] = 0; } ip->size = 0; iupdate(ip);}// Copy stat information from inode.voidstati(struct inode *ip, struct stat *st){ st->dev = ip->dev; st->ino = ip->inum; st->type = ip->type; st->nlink = ip->nlink; st->size = ip->size;}// Read data from inode.intreadi(struct inode *ip, char *dst, uint off, uint n){ uint tot, m; struct buf *bp; if(ip->type == T_DEV){ if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].read) return -1; return devsw[ip->major].read(ip, dst, n); } if(off > ip->size || off + n < off) return -1; if(off + n > ip->size) n = ip->size - off; for(tot=0; tot<n; tot+=m, off+=m, dst+=m){ bp = bread(ip->dev, bmap(ip, off/BSIZE, 0)); m = min(n - tot, BSIZE - off%BSIZE); memmove(dst, bp->data + off%BSIZE, m); brelse(bp); } return n;}// Write data to inode.intwritei(struct inode *ip, char *src, uint off, uint n){ uint tot, m; struct buf *bp; if(ip->type == T_DEV){ if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].write) return -1; return devsw[ip->major].write(ip, src, n); } if(off + n < off) return -1; if(off + n > MAXFILE*BSIZE) n = MAXFILE*BSIZE - off; for(tot=0; tot<n; tot+=m, off+=m, src+=m){ bp = bread(ip->dev, bmap(ip, off/BSIZE, 1)); m = min(n - tot, BSIZE - off%BSIZE); memmove(bp->data + off%BSIZE, src, m); bwrite(bp); brelse(bp); } if(n > 0 && off > ip->size){ ip->size = off; iupdate(ip); } return n;}// Directoriesintnamecmp(const char *s, const char *t){ return strncmp(s, t, DIRSIZ);}// Look for a directory entry in a directory.// If found, set *poff to byte offset of entry.// Caller must have already locked dp.struct inode*dirlookup(struct inode *dp, char *name, uint *poff){ uint off, inum; struct buf *bp; struct dirent *de; if(dp->type != T_DIR) panic("dirlookup not DIR"); for(off = 0; off < dp->size; off += BSIZE){ bp = bread(dp->dev, bmap(dp, off / BSIZE, 0)); for(de = (struct dirent*)bp->data; de < (struct dirent*)(bp->data + BSIZE); de++){ if(de->inum == 0) continue; if(namecmp(name, de->name) == 0){ // entry matches path element if(poff) *poff = off + (uchar*)de - bp->data; inum = de->inum; brelse(bp); return iget(dp->dev, inum); } } brelse(bp); } return 0;}// Write a new directory entry (name, ino) into the directory dp.intdirlink(struct inode *dp, char *name, uint ino){ int off; struct dirent de; struct inode *ip; // Check that name is not present. if((ip = dirlookup(dp, name, 0)) != 0){ iput(ip); return -1; } // Look for an empty dirent. for(off = 0; off < dp->size; off += sizeof(de)){ if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirlink read"); if(de.inum == 0) break; } strncpy(de.name, name, DIRSIZ); de.inum = ino; if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de)) panic("dirlink"); return 0;}// Paths// Copy the next path element from path into name.// Return a pointer to the element following the copied one.// The returned path has no leading slashes,// so the caller can check *path=='\0' to see if the name is the last one.// If no name to remove, return 0.//// Examples:// skipelem("a/bb/c", name) = "bb/c", setting name = "a"// skipelem("///a//bb", name) = "bb", setting name = "a"// skipelem("", name) = skipelem("////", name) = 0//static char*skipelem(char *path, char *name){ char *s; int len; while(*path == '/') path++; if(*path == 0) return 0; s = path; while(*path != '/' && *path != 0) path++; len = path - s; if(len >= DIRSIZ) memmove(name, s, DIRSIZ); else { memmove(name, s, len); name[len] = 0; } while(*path == '/') path++; return path;}// Look up and return the inode for a path name.// If parent != 0, return the inode for the parent and copy the final// path element into name, which must have room for DIRSIZ bytes.static struct inode*_namei(char *path, int parent, char *name){ struct inode *ip, *next; if(*path == '/') ip = iget(ROOTDEV, 1); else ip = idup(cp->cwd); while((path = skipelem(path, name)) != 0){ ilock(ip); if(ip->type != T_DIR){ iunlockput(ip); return 0; } if(parent && *path == '\0'){ // Stop one level early. iunlock(ip); return ip; } if((next = dirlookup(ip, name, 0)) == 0){ iunlockput(ip); return 0; } iunlockput(ip); ip = next; } if(parent){ iput(ip); return 0; } return ip;}struct inode*namei(char *path){ char name[DIRSIZ]; return _namei(path, 0, name);}struct inode*nameiparent(char *path, char *name){ return _namei(path, 1, name);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -