📄 network.java
字号:
/**
* Network
* Copyright 2005 by Jeff Heaton(jeff@jeffheaton.com)
*
* Example program from Chapter 10
* Programming Neural Networks in Java
* http://www.heatonresearch.com/articles/series/1/
*
* This software is copyrighted. You may use it in programs
* of your own, without restriction, but you may not
* publish the source code without the author's permission.
* For more information on distributing this code, please
* visit:
* http://www.heatonresearch.com/hr_legal.php
*
* @author Jeff Heaton
* @version 1.1
*/
public class Network {
/**
* The global error for the training.
*/
protected double globalError;
/**
* The number of input neurons.
*/
protected int inputCount;
/**
* The number of hidden neurons.
*/
protected int hiddenCount;
/**
* The number of output neurons
*/
protected int outputCount;
/**
* The total number of neurons in the network.
*/
protected int neuronCount;
/**
* The number of weights in the network.
*/
protected int weightCount;
/**
* The learning rate.
*/
protected double learnRate;
/**
* The outputs from the various levels.
*/
protected double fire[];
/**
* The weight matrix this, along with the thresholds can be
* thought of as the "memory" of the neural network.
*/
protected double matrix[];
/**
* The errors from the last calculation.
*/
protected double error[];
/**
* Accumulates matrix delta's for training.
*/
protected double accMatrixDelta[];
/**
* The thresholds, this value, along with the weight matrix
* can be thought of as the memory of the neural network.
*/
protected double thresholds[];
/**
* The changes that should be applied to the weight
* matrix.
*/
protected double matrixDelta[];
/**
* The accumulation of the threshold deltas.
*/
protected double accThresholdDelta[];
/**
* The threshold deltas.
*/
protected double thresholdDelta[];
/**
* The momentum for training.
*/
protected double momentum;
/**
* The changes in the errors.
*/
protected double errorDelta[];
/**
* Construct the neural network.
*
* @param inputCount The number of input neurons.
* @param hiddenCount The number of hidden neurons
* @param outputCount The number of output neurons
* @param learnRate The learning rate to be used when training.
* @param momentum The momentum to be used when training.
*/
public Network(int inputCount,
int hiddenCount,
int outputCount,
double learnRate,
double momentum) {
this.learnRate = learnRate;
this.momentum = momentum;
this.inputCount = inputCount;
this.hiddenCount = hiddenCount;
this.outputCount = outputCount;
neuronCount = inputCount + hiddenCount + outputCount;
weightCount = (inputCount * hiddenCount) + (hiddenCount * outputCount);
fire = new double[neuronCount];
matrix = new double[weightCount];
matrixDelta = new double[weightCount];
thresholds = new double[neuronCount];
errorDelta = new double[neuronCount];
error = new double[neuronCount];
accThresholdDelta = new double[neuronCount];
accMatrixDelta = new double[weightCount];
thresholdDelta = new double[neuronCount];
reset();
}
/**
* Returns the root mean square error for a complete training set.
*
* @param len The length of a complete training set.
* @return The current error for the neural network.
*/
public double getError(int len) {
double err = Math.sqrt(globalError / (len * outputCount));
globalError = 0; // clear the accumulator
return err;
}
/**
* The threshold method. You may wish to override this class to provide other
* threshold methods.
*
* @param sum The activation from the neuron.
* @return The activation applied to the threshold method.
*/
public double threshold(double sum) {
return 1.0 / (1 + Math.exp(-1.0 * sum));
}
/**
* Compute the output for a given input to the neural network.
*
* @param input The input provide to the neural network.
* @return The results from the output neurons.
*/
public double []computeOutputs(double input[]) {
int i, j;
final int hiddenIndex = inputCount;
final int outIndex = inputCount + hiddenCount;
for (i = 0; i < inputCount; i++) {
fire[i] = input[i];
}
// first layer
int inx = 0;
for (i = hiddenIndex; i < outIndex; i++) {
double sum = thresholds[i];
for (j = 0; j < inputCount; j++) {
sum += fire[j] * matrix[inx++];
}
fire[i] = threshold(sum);
}
// hidden layer
double result[] = new double[outputCount];
for (i = outIndex; i < neuronCount; i++) {
double sum = thresholds[i];
for (j = hiddenIndex; j < outIndex; j++) {
sum += fire[j] * matrix[inx++];
}
fire[i] = threshold(sum);
result[i-outIndex] = fire[i];
}
return result;
}
/**
* Calculate the error for the recognition just done.
*
* @param ideal What the output neurons should have yielded.
*/
public void calcError(double ideal[]) {
int i, j;
final int hiddenIndex = inputCount;
final int outputIndex = inputCount + hiddenCount;
// clear hidden layer errors
for (i = inputCount; i < neuronCount; i++) {
error[i] = 0;
}
// layer errors and deltas for output layer
for (i = outputIndex; i < neuronCount; i++) {
error[i] = ideal[i - outputIndex] - fire[i];
globalError += error[i] * error[i];
errorDelta[i] = error[i] * fire[i] * (1 - fire[i]);
}
// hidden layer errors
int winx = inputCount * hiddenCount;
for (i = outputIndex; i < neuronCount; i++) {
for (j = hiddenIndex; j < outputIndex; j++) {
accMatrixDelta[winx] += errorDelta[i] * fire[j];
error[j] += matrix[winx] * errorDelta[i];
winx++;
}
accThresholdDelta[i] += errorDelta[i];
}
// hidden layer deltas
for (i = hiddenIndex; i < outputIndex; i++) {
errorDelta[i] = error[i] * fire[i] * (1 - fire[i]);
}
// input layer errors
winx = 0; // offset into weight array
for (i = hiddenIndex; i < outputIndex; i++) {
for (j = 0; j < hiddenIndex; j++) {
accMatrixDelta[winx] += errorDelta[i] * fire[j];
error[j] += matrix[winx] * errorDelta[i];
winx++;
}
accThresholdDelta[i] += errorDelta[i];
}
}
/**
* Modify the weight matrix and thresholds based on the last call to
* calcError.
*/
public void learn() {
int i;
// process the matrix
for (i = 0; i < matrix.length; i++) {
matrixDelta[i] = (learnRate * accMatrixDelta[i]) + (momentum * matrixDelta[i]);
matrix[i] += matrixDelta[i];
accMatrixDelta[i] = 0;
}
// process the thresholds
for (i = inputCount; i < neuronCount; i++) {
thresholdDelta[i] = learnRate * accThresholdDelta[i] + (momentum * thresholdDelta[i]);
thresholds[i] += thresholdDelta[i];
accThresholdDelta[i] = 0;
}
}
/**
* Reset the weight matrix and the thresholds.
*/
public void reset() {
int i;
for (i = 0; i < neuronCount; i++) {
thresholds[i] = 0.5 - (Math.random());
thresholdDelta[i] = 0;
accThresholdDelta[i] = 0;
}
for (i = 0; i < matrix.length; i++) {
matrix[i] = 0.5 - (Math.random());
matrixDelta[i] = 0;
accMatrixDelta[i] = 0;
}
}
/**
* Convert to an array. This is used with some training algorithms
* that require that the "memory" of the neuron(the weight and threshold
* values) be expressed as a linear array.
*
* @return The memory of the neuron.
*/
public double []toArray()
{
double result[] = new double[matrix.length+thresholds.length];
for (int i=0;i<matrix.length;i++)
result[i] = matrix[i];
for (int i=0;i<thresholds.length;i++)
result[matrix.length+i] = thresholds[i];
return result;
}
/**
* Use an array to populate the memory of the neural network.
*
* @param array An array of doubles.
*/
public void fromArray(double array[])
{
for (int i=0;i<matrix.length;i++)
matrix[i] = array[i];
for (int i=0;i<thresholds.length;i++)
thresholds[i] = array[matrix.length+i];
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -