📄 diffevol.sci
字号:
function [optarg,optval,nfeval] = DiffEvol(fct,VTR,D,XVmin,XVmax,USERDATA,NP,... itermax,F,CR,strategy,report);// minimization of a user-supplied function with respect to x(1:D),// using the differential evolution (DE) algorithm of Rainer Storn// (http://www.icsi.berkeley.edu/~storn/code.html)// // Special thanks go to Ken Price (kprice@solano.community.net) and// Arnold Neumaier (http://solon.cma.univie.ac.at/~neum/) for their// valuable contributions to improve the code.// // Strategies with exponential crossover, further input variable// tests, and arbitrary function name implemented by Jim Van Zandt // <jrv@vanzandt.mv.com>, 12/97.//// Scilab version by Walter Di Carlo <walter.dicarlo@jrc.it> 03/04/99// modified by Helmut Jarausch <jarausch@igpm.rwth-aachen.de> 2006/03/01//// See also http://www.icsi.berkeley.edu/~storn/deshort1.ps//// Output arguments:// ----------------// optarg parameter vector with best solution// optval best objective function value// nfeval number of function evaluations//// Input arguments: // ---------------//// fct cost function fct(x,USERDATA) to minimize// VTR "Value To Reach". DiffEvol will stop its minimization// if either the maximum number of iterations "itermax"// is reached or the best parameter vector "optarg" // has found a value f(optarg,y) <= VTR.// D number of parameters of the objective function // XVmin vector of lower bounds XVmin(1) ... XVmin(D)// of initial population// *** note: these are not bound constraints!! ***// XVmax vector of upper bounds XVmax(1) ... XVmax(D)// of initial population// USERDATA problem data vector which is passed transparently to// the cost function fct// NP number of population members// itermax maximum number of iterations (generations)// F DE-stepsize F from interval [0, 2]// for strategies 3 and 8 this has 2 components// CR crossover probability constant from interval [0, 1]// strategy 1 --> DE/best/1/exp 6 --> DE/best/1/bin// 2 --> DE/rand/1/exp 7 --> DE/rand/1/bin// 3 --> DE/rand-to-best/1/exp 8 --> DE/rand-to-best/1/bin// 4 --> DE/best/2/exp 9 --> DE/best/2/bin// 5 --> DE/rand/2/exp else DE/rand/2/bin// Experiments suggest that /bin likes to have a slightly// larger CR than /exp.// report intermediate output will be produced after "report"// iterations. No intermediate output will be produced// if report is < 1//// The first four arguments are essential (though they have// default values, too). In particular, the algorithm seems to// work well only if [XVmin,XVmax] covers the region where the// global minimum is expected. DE is also somewhat sensitive to// the choice of the stepsize F. A good initial guess is to// choose F from interval [0.5, 1], e.g. 0.8. CR, the crossover// probability constant from interval [0, 1] helps to maintain// the diversity of the population and is rather uncritical. The// number of population members NP is also not very critical. A// good initial guess is 10*D. Depending on the difficulty of the// problem NP can be lower than 10*D or must be higher than 10*D// to achieve convergence.// If the parameters are correlated, high values of CR work better.// The reverse is true for no correlation.//// default values in case of missing input arguments:// VTR = 1.e-6;// D = 2; // XVmin = [-2 -2]'; // XVmax = [2 2]'; // y=[];// NP = 10*D; // itermax = 200; // F = [0.8;0.6]; // CR = 0.5; // strategy = 7;// report = 10; //// Cost function: function result = f(x,y);// has to be defined by the user and is minimized// w.r. to x(1:D).//// Example to find the minimum of the Rosenbrock saddle:// ----------------------------------------------------// Define f.m as:// function result = f(x,y);// result = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;// end// Then type://// VTR = 1.e-6;// D = 2; // XVmin = [-2 -2]; // XVmax = [2 2]; // [optarg,optval,nfeval] = DiffEvol(f,VTR,D,XVmin,XVmax);//// The same example with a more complete argument list is handled in // run1.m//// Constraints can be added by an L1 penalty function//// About DiffEvol.m// --------------// Differential Evolution for MATLAB// Copyright (C) 1996, 1997 R. Storn// International Computer Science Institute (ICSI)// 1947 Center Street, Suite 600// Berkeley, CA 94704// E-mail: storn@icsi.berkeley.edu// WWW: http://http.icsi.berkeley.edu/~storn//// devec is a vectorized variant of DE which, however, has a// propertiy which differs from the original version of DE:// 1) The random selection of vectors is performed by shuffling the// population array. Hence a certain vector can't be chosen twice// in the same term of the perturbation expression.//// Due to the vectorized expressions DiffEvol executes fairly fast// in MATLAB's interpreter environment.//// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 1, or (at your option)// any later version.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details. A copy of the GNU // General Public License can be obtained from the // Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.mode(0);//Check input variables---------------------------------------------err=[];nargin = argn(2);if nargin<1, error('DiffEvol 1st argument must be function name'); else if type(fct) ~= 13; err(1,length(err)+1)=1; end; end;if nargin<2, VTR = 1.e-6; else if length(VTR)~=1; err(1,length(err)+1)=2; end; end;if nargin<3, D = 2; else if length(D)~=1; err(1,length(err)+1)=3; end; end; if nargin<4, XVmin = [-2 -2]';else if size(XVmin,1)~=D; err(1,length(err)+1)=4; end; end; if nargin<5, XVmax = [2 2]'; else if size(XVmax,1)~=D; err(1,length(err)+1)=5; end; end; if nargin<6, y=[]; end; if nargin<7, NP = 10*D; else if length(NP)~=1; err(1,length(err)+1)=7; end; end; if nargin<8, itermax = 200; else if length(itermax)~=1; err(1,length(err)+1)=8; end; end; if nargin<11, strategy = 7; else if length(strategy)~=1; err(1,length(err)+1)=11; end; end;if nargin<9, F = [0.8;0.6]; else if modulo(strategy,5) == 3 if length(F)~=2; err(1,length(err)+1)=9; end; Lam= F(2); else if length(F)~=1; err(1,length(err)+1)=9; end; endend;F= F(1);if nargin<10, CR = 0.5; else if length(CR)~=1; err(1,length(err)+1)=10; end; end; if nargin<12, report = 10; else if length(report)~=1; err(1,length(err)+1)=12; end; end; if length(err)>0 printf('error in parameter %d\n', err); x_message('DiffEvol (function,scalar,scalar,vector,vector,any,integer,integer,scalar,scalar,integer,integer)'); end;if (NP < 5) NP=5; printf(' NP increased to minimal value 5\n');end;if ((CR < 0) | (CR > 1)) CR=0.5; printf('CR should be from interval [0,1]; set to default value 0.5\n');end;if (itermax <= 0) itermax = 200; printf('itermax should be > 0; set to default value 200\n');end;report = floor(report);//-----Initialize population and some arrays-------------------------------pop = zeros(D,NP); //initialize pop to gain speed//----pop is a matrix of size NPxD. It will be initialized-------------//----with random values between the min and max values of the---------//----parameters-------------------------------------------------------for i=1:NP pop(:,i) = XVmin + rand(D,1).*(XVmax - XVmin);end;popold = zeros(pop); // toggle populationval = zeros(NP,1); // create and reset the "cost array"optarg = zeros(D,1); // best population member everoptargit = zeros(D,1); // best population member in iterationnfeval = 0; // number of function evaluations//------Evaluate the best member after initialization----------------------ibest = 1; // start with first population member val(1) = fct(pop(:,ibest),y);optval = val(1); // best objective function value so farnfeval = nfeval + 1;for i=2:NP // check the remaining members val(i) = fct(pop(:,i),y); nfeval = nfeval + 1; if (val(i) < optval) // if member is better ibest = i; // save its location optval = val(i); end;end;optargit = pop(:,ibest); // best member of current iterationoptvalit = optval; // best value of current iterationoptarg = optargit; // best member ever//------DE-Minimization---------------------------------------------//------popold is the population which has to compete. It is--------//------static through one iteration. pop is the newly--------------//------emerging population.----------------------------------------pm1 = zeros(D,NP); // initialize population matrix 1pm2 = zeros(D,NP); // initialize population matrix 2pm3 = zeros(D,NP); // initialize population matrix 3pm4 = zeros(D,NP); // initialize population matrix 4pm5 = zeros(D,NP); // initialize population matrix 5bm = zeros(D,NP); // initialize optargber matrixui = zeros(D,NP); // intermediate population of perturbed vectorsmui = zeros(D,NP); // mask for intermediate populationmpo = zeros(D,NP); // mask for old populationrot = (0:1:NP-1)'; // rotating index array (size NP)rotd= (0:1:D-1)'; // rotating index array (size D)rt = zeros(NP,1); // another rotating index arrayrtd = zeros(D,1); // rotating index array for exponential crossovera1 = zeros(NP,1); // index arraya2 = zeros(NP,1); // index arraya3 = zeros(NP,1); // index arraya4 = zeros(NP,1); // index arraya5 = zeros(NP,1); // index arrayind = zeros(4,1);iter = 1;while ((iter < itermax) & (optval > VTR)) popold = pop; // save the old population ind = grand(1,'prm',(1:4)'); // index pointer array a1 = grand(1,'prm',(1:NP)'); // shuffle locations of vectors rt = modulo(rot+ind(1),NP); // rotate indices by ind(1) positions a2 = a1(rt+1); // rotate vector locations rt = modulo(rot+ind(2),NP); a3 = a2(rt+1); rt = modulo(rot+ind(3),NP); a4 = a3(rt+1); rt = modulo(rot+ind(4),NP); a5 = a4(rt+1); pm1 = popold(:,a1); // shuffled population 1 pm2 = popold(:,a2); // shuffled population 2 pm3 = popold(:,a3); // shuffled population 3 pm4 = popold(:,a4); // shuffled population 4 pm5 = popold(:,a5); // shuffled population 5// population filled with the best member bm= optargit*ones(1,NP); // of the last iteration // for i=1:NP // bm(:,i) = optargit; // of the last iteration// end; mui = (rand(D,NP) < CR) * 1; // all random numbers < CR are 1, 0 otherwise if (strategy > 5) st = strategy-5; // binomial crossover else st = strategy; // exponential crossover mui=sort(mui); // transpose, collect 1's in each column for i=1:NP n=floor(rand()*D); if n > 0 rtd = modulo(rotd+n,D); mui(:,i) = mui(rtd+1,i); //rotate column i by n end; end; end; mpo = (mui < 0.5) * 1; // inverse mask to mui select st case 1 // DE/best/1 ui = bm + F*(pm1 - pm2); // differential variation ui = popold.*mpo + ui.*mui; // crossover case 2 // DE/rand/1 ui = pm3 + F*(pm1 - pm2); // differential variation ui = popold.*mpo + ui.*mui; // crossover case 3 // DE/rand-to-best/1 ui = popold + Lam*(bm-popold) + F*(pm1 - pm2); ui = popold.*mpo + ui.*mui; // crossover case 4 // DE/best/2 ui = bm + F*(pm1 - pm2 + pm3 - pm4); // differential variation ui = popold.*mpo + ui.*mui; // crossover else // DE/rand/2 ui = pm5 + F*(pm1 - pm2 + pm3 - pm4); // differential variation ui = popold.*mpo + ui.*mui; // crossover end;//-----Select which vectors are allowed to enter the new population------------ for i=1:NP tempval = fct(ui(:,i),y); // check cost of competitor nfeval = nfeval + 1; if (tempval <= val(i)) // if competitor is better than value in "cost array" pop(:,i) = ui(:,i); // replace old vector with new one (for new iteration) val(i) = tempval; // save value in "cost array" //----we update optval only in case of success to save time----------- if (tempval < optval) // if competitor better than the best one ever optval = tempval; // new best value optarg = ui(:,i); // new best parameter vector ever end; end; end; //---end for imember=1:NP optargit = optarg; // freeze the best member of this iteration for the coming // iteration. This is needed for some of the strategies.//----Output section---------------------------------------------------------- if (report > 0) if (modulo(iter,report) == 0) printf('Iteration: %d, Best: %f, F: %f, CR: %f, NP: %d\n',iter,optval,F,CR,NP); for n=1:D printf('best(%d) = %f\n',n,optarg(n)); end; end; end; iter = iter + 1;end; //---end while ((iter < itermax) ...endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -