⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tstool demo 2.htm

📁 这是时间序列的matlab程序应用
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0049)http://www.physik3.gwdg.de/tstool/demo/demo2.html -->
<HTML><HEAD><TITLE>TSTOOL Demo 2</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2314.1000" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff text=#000000 face="arial, helvetica" <font>
<H1>Example analysis of a time-series from a Colpitts oscillator</H1><BR><!--latex-off-->
<H3>Warning : This example sessions is not intended as a tutorial for nonlinear 
time series analysis. It is merely meant as an introduction into the syntax of 
the TSTOOL toolbox.</H3><BR><!--latex-on--><CODE>&gt;&gt; s = 
signal('colpitts.dat','ascii')<BR>s = signal object <BR><BR>Dlens : 
6001<BR>X-Axis 1 : | <BR><BR>Name : colpitts<BR>Type : <BR><BR>Attributes of 
data values : <BR>| <BR><BR>Comment : <BR><BR>History : <BR>17-Aug-1999 15:08:24 
: Imported from ASCII file 'colpitts.dat'<BR></CODE>
<P>By entering the above command line, the overloaded constructor for class 
signal was called. Giving a filename as argument tells the constructor to load 
the datafile and convert it into a signal object. The datafile 'colpitts.dat' 
contains a time-series generated by an electronical oscillator that shows 
nonlinear deterministic behaviour</P>
<P>To plot signal s, just issue the following command 
:</P><CODE>view(s);<BR></CODE><IMG src="TSTOOL Demo 2.files/demo2a.gif"> 
<P>Lets find a good choice for a delay-time by using the first minimum of the 
auto mutual information function</P><CODE>a = 
amutual(s,32);<BR>view(a);<BR></CODE><IMG src="TSTOOL Demo 2.files/demo2b.gif"> 
<P>The first minimum of the auto mutual information can be found at four. Now we 
need to know the minimal embedding dimension for the colpitts signal. We use 
Cao's method with an delay time of four, an maximal dimension of eight, three 
nearest neighbors and 1000 reference points.</P><CODE>c = 
cao(s,8,4,3,1000);<BR>view(c);<BR></CODE><IMG 
src="TSTOOL Demo 2.files/demo2c.gif"> 
<P>There's a kink in the graph produced by Cao's method at three. So now do a 
time-delay reconstruction of the colpitts signal with embedding dimension 3 and 
delay 4.</P><CODE>e = embed(s, 3, 4);<BR>view(e);<BR></CODE><IMG 
src="TSTOOL Demo 2.files/demo2d.gif"> 
<P>What's the correlation dimension of the reconstructed data set ? First let's 
take a look at the scaling of the correlation sum versus the radius (as log-log 
plot).</P><CODE>view(corrdim2(e, -1, 0.05, 40, 32));<BR></CODE><IMG 
src="TSTOOL Demo 2.files/demo2e.gif"> 
<P>Next, we use the Takens estimator for the correlation dimension. It needs 
basically the same input arguments as the function corrdim2.</P><CODE>&gt;&gt; 
takens_estimator(e, -1, 0.05, 40) <BR><BR>ans =<BR><BR>1.9483<BR></CODE>
<P>And what about it's largest lyapunov exponent ? To estimate the largest 
lyapunov exponent, we take a look at the scaling of the prediction error. 
</P><CODE>view(largelyap(e, 1000, 300, 40, 2));<BR></CODE><IMG 
src="TSTOOL Demo 2.files/demo2f.gif"> <!--latex-off-->
<HR>
<IMG alt=TSTOOL border=0 src="TSTOOL Demo 2.files/logo.gif"> 
<P><FONT size=-1>Copyright &copy; 1997-99 <A href="http://www.physik3.gwdg.de/">DPI 
G&ouml;ttingen</A></FONT> <!--latex-on--></P></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -