📄 double.java
字号:
* * @return the <code>double</code> value represented by this object * converted to type <code>short</code> * @since JDK1.1 */ public short shortValue() { return (short)value; } /** * Returns the value of this <code>Double</code> as an * <code>int</code> (by casting to type <code>int</code>). * * @return the <code>double</code> value represented by this object * converted to type <code>int</code> */ public int intValue() { return (int)value; } /** * Returns the value of this <code>Double</code> as a * <code>long</code> (by casting to type <code>long</code>). * * @return the <code>double</code> value represented by this object * converted to type <code>long</code> */ public long longValue() { return (long)value; } /** * Returns the <code>float</code> value of this * <code>Double</code> object. * * @return the <code>double</code> value represented by this object * converted to type <code>float</code> * @since JDK1.0 */ public float floatValue() { return (float)value; } /** * Returns the <code>double</code> value of this * <code>Double</code> object. * * @return the <code>double</code> value represented by this object */ public double doubleValue() { return (double)value; } /** * Returns a hash code for this <code>Double</code> object. The * result is the exclusive OR of the two halves of the * <code>long</code> integer bit representation, exactly as * produced by the method {@link #doubleToLongBits(double)}, of * the primitive <code>double</code> value represented by this * <code>Double</code> object. That is, the hash code is the value * of the expression: * <blockquote><pre> * (int)(v^(v>>>32)) * </pre></blockquote> * where <code>v</code> is defined by: * <blockquote><pre> * long v = Double.doubleToLongBits(this.doubleValue()); * </pre></blockquote> * * @return a <code>hash code</code> value for this object. */ public int hashCode() { long bits = doubleToLongBits(value); return (int)(bits ^ (bits >>> 32)); } /** * Compares this object against the specified object. The result * is <code>true</code> if and only if the argument is not * <code>null</code> and is a <code>Double</code> object that * represents a <code>double</code> that has the same value as the * <code>double</code> represented by this object. For this * purpose, two <code>double</code> values are considered to be * the same if and only if the method {@link * #doubleToLongBits(double)} returns the identical * <code>long</code> value when applied to each. * <p> * Note that in most cases, for two instances of class * <code>Double</code>, <code>d1</code> and <code>d2</code>, the * value of <code>d1.equals(d2)</code> is <code>true</code> if and * only if * <blockquote><pre> * d1.doubleValue() == d2.doubleValue() * </pre></blockquote> * <p> * also has the value <code>true</code>. However, there are two * exceptions: * <ul> * <li>If <code>d1</code> and <code>d2</code> both represent * <code>Double.NaN</code>, then the <code>equals</code> method * returns <code>true</code>, even though * <code>Double.NaN==Double.NaN</code> has the value * <code>false</code>. * <li>If <code>d1</code> represents <code>+0.0</code> while * <code>d2</code> represents <code>-0.0</code>, or vice versa, * the <code>equal</code> test has the value <code>false</code>, * even though <code>+0.0==-0.0</code> has the value <code>true</code>. * </ul> * This definition allows hash tables to operate properly. * @param obj the object to compare with. * @return <code>true</code> if the objects are the same; * <code>false</code> otherwise. * @see java.lang.Double#doubleToLongBits(double) */ public boolean equals(Object obj) { return (obj instanceof Double) && (doubleToLongBits(((Double)obj).value) == doubleToLongBits(value)); } /** * Returns a representation of the specified floating-point value * according to the IEEE 754 floating-point "double * format" bit layout. * <p> * Bit 63 (the bit that is selected by the mask * <code>0x8000000000000000L</code>) represents the sign of the * floating-point number. Bits * 62-52 (the bits that are selected by the mask * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 * (the bits that are selected by the mask * <code>0x000fffffffffffffL</code>) represent the significand * (sometimes called the mantissa) of the floating-point number. * <p> * If the argument is positive infinity, the result is * <code>0x7ff0000000000000L</code>. * <p> * If the argument is negative infinity, the result is * <code>0xfff0000000000000L</code>. * <p> * If the argument is NaN, the result is * <code>0x7ff8000000000000L</code>. * <p> * In all cases, the result is a <code>long</code> integer that, when * given to the {@link #longBitsToDouble(long)} method, will produce a * floating-point value the same as the argument to * <code>doubleToLongBits</code> (except all NaN values are * collapsed to a single "canonical" NaN value). * * @param value a <code>double</code> precision floating-point number. * @return the bits that represent the floating-point number. */ public static native long doubleToLongBits(double value); /** * Returns a representation of the specified floating-point value * according to the IEEE 754 floating-point "double * format" bit layout, preserving Not-a-Number (NaN) values. * <p> * Bit 63 (the bit that is selected by the mask * <code>0x8000000000000000L</code>) represents the sign of the * floating-point number. Bits * 62-52 (the bits that are selected by the mask * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 * (the bits that are selected by the mask * <code>0x000fffffffffffffL</code>) represent the significand * (sometimes called the mantissa) of the floating-point number. * <p> * If the argument is positive infinity, the result is * <code>0x7ff0000000000000L</code>. * <p> * If the argument is negative infinity, the result is * <code>0xfff0000000000000L</code>. * <p> * If the argument is NaN, the result is the <code>long</code> * integer representing the actual NaN value. Unlike the * <code>doubleToLongBits</code> method, * <code>doubleToRawLongBits</code> does not collapse all the bit * patterns encoding a NaN to a single "canonical" NaN * value. * <p> * In all cases, the result is a <code>long</code> integer that, * when given to the {@link #longBitsToDouble(long)} method, will * produce a floating-point value the same as the argument to * <code>doubleToRawLongBits</code>. * * @param value a <code>double</code> precision floating-point number. * @return the bits that represent the floating-point number. */ public static native long doubleToRawLongBits(double value); /** * Returns the <code>double</code> value corresponding to a given * bit representation. * The argument is considered to be a representation of a * floating-point value according to the IEEE 754 floating-point * "double format" bit layout. * <p> * If the argument is <code>0x7ff0000000000000L</code>, the result * is positive infinity. * <p> * If the argument is <code>0xfff0000000000000L</code>, the result * is negative infinity. * <p> * If the argument is any value in the range * <code>0x7ff0000000000001L</code> through * <code>0x7fffffffffffffffL</code> or in the range * <code>0xfff0000000000001L</code> through * <code>0xffffffffffffffffL</code>, the result is a NaN. No IEEE * 754 floating-point operation provided by Java can distinguish * between two NaN values of the same type with different bit * patterns. Distinct values of NaN are only distinguishable by * use of the <code>Double.doubleToRawLongBits</code> method. * <p> * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three * values that can be computed from the argument: * <blockquote><pre> * int s = ((bits >> 63) == 0) ? 1 : -1; * int e = (int)((bits >> 52) & 0x7ffL); * long m = (e == 0) ? * (bits & 0xfffffffffffffL) << 1 : * (bits & 0xfffffffffffffL) | 0x10000000000000L; * </pre></blockquote> * Then the floating-point result equals the value of the mathematical * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>. *<p> * Note that this method may not be able to return a * <code>double</code> NaN with exactly same bit pattern as the * <code>long</code> argument. IEEE 754 distinguishes between two * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The * differences between the two kinds of NaN are generally not * visible in Java. Arithmetic operations on signaling NaNs turn * them into quiet NaNs with a different, but often similar, bit * pattern. However, on some processors merely copying a * signaling NaN also performs that conversion. In particular, * copying a signaling NaN to return it to the calling method * may perform this conversion. So <code>longBitsToDouble</code> * may not be able to return a <code>double</code> with a * signaling NaN bit pattern. Consequently, for some * <code>long</code> values, * <code>doubleToRawLongBits(longBitsToDouble(start))</code> may * <i>not</i> equal <code>start</code>. Moreover, which * particular bit patterns represent signaling NaNs is platform * dependent; although all NaN bit patterns, quiet or signaling, * must be in the NaN range identified above. * * @param bits any <code>long</code> integer. * @return the <code>double</code> floating-point value with the same * bit pattern. */ public static native double longBitsToDouble(long bits); /** * Compares two <code>Double</code> objects numerically. There * are two ways in which comparisons performed by this method * differ from those performed by the Java language numerical * comparison operators (<code><, <=, ==, >= ></code>) * when applied to primitive <code>double</code> values: * <ul><li> * <code>Double.NaN</code> is considered by this method * to be equal to itself and greater than all other * <code>double</code> values (including * <code>Double.POSITIVE_INFINITY</code>). * <li> * <code>0.0d</code> is considered by this method to be greater * than <code>-0.0d</code>. * </ul> * This ensures that <code>Double.compareTo(Object)</code> (which * forwards its behavior to this method) obeys the general * contract for <code>Comparable.compareTo</code>, and that the * <i>natural order</i> on <code>Double</code>s is <i>consistent * with equals</i>. * * @param anotherDouble the <code>Double</code> to be compared. * @return the value <code>0</code> if <code>anotherDouble</code> is * numerically equal to this <code>Double</code>; a value * less than <code>0</code> if this <code>Double</code> * is numerically less than <code>anotherDouble</code>; * and a value greater than <code>0</code> if this * <code>Double</code> is numerically greater than * <code>anotherDouble</code>. * * @since 1.2 * @see Comparable#compareTo(Object) */ public int compareTo(Double anotherDouble) { return Double.compare(value, anotherDouble.value); } /** * Compares this <code>Double</code> object to another object. If * the object is a <code>Double</code>, this function behaves like * <code>compareTo(Double)</code>. Otherwise, it throws a * <code>ClassCastException</code> (as <code>Double</code> objects * are comparable only to other <code>Double</code> objects). * * @param o the <code>Object</code> to be compared. * @return the value <code>0</code> if the argument is a * <code>Double</code> numerically equal to this * <code>Double</code>; a value less than <code>0</code> * if the argument is a <code>Double</code> numerically * greater than this <code>Double</code>; and a value * greater than <code>0</code> if the argument is a * <code>Double</code> numerically less than this * <code>Double</code>. * @exception <code>ClassCastException</code> if the argument is not a * <code>Double</code>. * @see java.lang.Comparable * @since 1.2 */ public int compareTo(Object o) { return compareTo((Double)o); } /** * Compares the two specified <code>double</code> values. The sign * of the integer value returned is the same as that of the * integer that would be returned by the call: * <pre> * new Double(d1).compareTo(new Double(d2)) * </pre> * * @param d1 the first <code>double</code> to compare * @param d2 the second <code>double</code> to compare * @return the value <code>0</code> if <code>d1</code> is * numerically equal to <code>d2</code>; a value less than * <code>0</code> if <code>d1</code> is numerically less than * <code>d2</code>; and a value greater than <code>0</code> * if <code>d1</code> is numerically greater than * <code>d2</code>. * @since 1.4 */ public static int compare(double d1, double d2) { if (d1 < d2) return -1; // Neither val is NaN, thisVal is smaller if (d1 > d2) return 1; // Neither val is NaN, thisVal is larger long thisBits = Double.doubleToLongBits(d1); long anotherBits = Double.doubleToLongBits(d2); return (thisBits == anotherBits ? 0 : // Values are equal (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 1)); // (0.0, -0.0) or (NaN, !NaN) } /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = -9172774392245257468L;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -