📄 double.java
字号:
/* * @(#)Double.java 1.73 06/10/10 * * Copyright 1990-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. * */package java.lang;/** * The <code>Double</code> class wraps a value of the primitive type * <code>double</code> in an object. An object of type * <code>Double</code> contains a single field whose type is * <code>double</code>. * <p> * In addition, this class provides several methods for converting a * <code>double</code> to a <code>String</code> and a * <code>String</code> to a <code>double</code>, as well as other * constants and methods useful when dealing with a * <code>double</code>. * * @version 1.82, 01/23/03 * @since JDK1.0 */public final class Double extends Number implements Comparable { /** * A constant holding the positive infinity of type * <code>double</code>. It is equal to the value returned by * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>. */ public static final double POSITIVE_INFINITY = 1.0 / 0.0; /** * A constant holding the negative infinity of type * <code>double</code>. It is equal to the value returned by * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>. */ public static final double NEGATIVE_INFINITY = -1.0 / 0.0; /** * A constant holding a Not-a-Number (NaN) value of type * <code>double</code>. It is equivalent to the value returned by * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>. */ public static final double NaN = 0.0d / 0.0; /** * A constant holding the largest positive finite value of type * <code>double</code>, (2-2<sup>-52</sup>)·2<sup>1023</sup>. * It is equal to the value returned by: * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>. */ public static final double MAX_VALUE = 1.7976931348623157e+308; /** * A constant holding the smallest positive nonzero value of type * <code>double</code>, 2<sup>-1074</sup>. It is equal to the * value returned by <code>Double.longBitsToDouble(0x1L)</code>. */// public static final double MIN_VALUE = 4.94065645841246544e-324;// public static final double MIN_VALUE = 4.9e-324; // From jdk 1.4.2 public static final double MIN_VALUE = longBitsToDouble(1L); /** * The <code>Class</code> instance representing the primitive type * <code>double</code>. * * @since JDK1.1 */ public static final Class TYPE = Class.getPrimitiveClass("double"); /** * Returns a string representation of the <code>double</code> * argument. All characters mentioned below are ASCII characters. * <ul> * <li>If the argument is NaN, the result is the string * "<code>NaN</code>". * <li>Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. If the sign is negative, * the first character of the result is '<code>-</code>' * (<code>'\u002D'</code>); if the sign is positive, no sign character * appears in the result. As for the magnitude <i>m</i>: * <ul> * <li>If <i>m</i> is infinity, it is represented by the characters * <code>"Infinity"</code>; thus, positive infinity produces the result * <code>"Infinity"</code> and negative infinity produces the result * <code>"-Infinity"</code>. * * <li>If <i>m</i> is zero, it is represented by the characters * <code>"0.0"</code>; thus, negative zero produces the result * <code>"-0.0"</code> and positive zero produces the result * <code>"0.0"</code>. * * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less * than 10<sup>7</sup>, then it is represented as the integer part of * <i>m</i>, in decimal form with no leading zeroes, followed by * '<code>.</code>' (<code>'\u002E'</code>), followed by one or * more decimal digits representing the fractional part of <i>m</i>. * * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or * equal to 10<sup>7</sup>, then it is represented in so-called * "computerized scientific notation." Let <i>n</i> be the unique * integer such that 10<sup><i>n</i></sup> <= <i>m</i> < * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the * mathematically exact quotient of <i>m</i> and * 10<sup><i>n</i></sup> so that 1 <= <i>a</i> < 10. The * magnitude is then represented as the integer part of <i>a</i>, * as a single decimal digit, followed by '<code>.</code>' * (<code>'\u002E'</code>), followed by decimal digits * representing the fractional part of <i>a</i>, followed by the * letter '<code>E</code>' (<code>'\u0045'</code>), followed * by a representation of <i>n</i> as a decimal integer, as * produced by the method {@link Integer#toString(int)}. * </ul> * </ul> * How many digits must be printed for the fractional part of * <i>m</i> or <i>a</i>? There must be at least one digit to represent * the fractional part, and beyond that as many, but only as many, more * digits as are needed to uniquely distinguish the argument value from * adjacent values of type <code>double</code>. That is, suppose that * <i>x</i> is the exact mathematical value represented by the decimal * representation produced by this method for a finite nonzero argument * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest * to <i>x</i>; or if two <code>double</code> values are equally close * to <i>x</i>, then <i>d</i> must be one of them and the least * significant bit of the significand of <i>d</i> must be <code>0</code>. * <p> * To create localized string representations of a floating-point * value, use subclasses of {@link java.text.NumberFormat}. * * @param d the <code>double</code> to be converted. * @return a string representation of the argument. */ public static String toString(double d) { return new FloatingDecimal(d).toJavaFormatString(); } /** * Returns a <code>Double</code> object holding the * <code>double</code> value represented by the argument string * <code>s</code>. * <p> * If <code>s</code> is <code>null</code>, then a * <code>NullPointerException</code> is thrown. * <p> * Leading and trailing whitespace characters in <code>s</code> * are ignored. The rest of <code>s</code> should constitute a * <i>FloatValue</i> as described by the lexical rule: * <blockquote><i> * <dl> * <dt>FloatValue: * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code> * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code> * <dd>Sign<sub>opt</sub> FloatingPointLiteral * </dl> * </i></blockquote> * where <i>Sign</i> and <i>FloatingPointLiteral</i> are as * defined in * <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230798">§3.10.2</a> * of the <a href="http://java.sun.com/docs/books/jls/html/">Java * Language Specification</a>. If <code>s</code> does not have the * form of a <i>FloatValue</i>, then a <code>NumberFormatException</code> * is thrown. Otherwise, <code>s</code> is regarded as * representing an exact decimal value in the usual "computerized * scientific notation"; this exact decimal value is then * conceptually converted to an "infinitely precise" binary value * that is then rounded to type <code>double</code> by the usual * round-to-nearest rule of IEEE 754 floating-point arithmetic, * which includes preserving the sign of a zero value. Finally, a * <code>Double</code> object representing this * <code>double</code> value is returned. * <p> * To interpret localized string representations of a * floating-point value, use subclasses of {@link * java.text.NumberFormat}. * * <p>Note that trailing format specifiers, specifiers that * determine the type of a floating-point literal * (<code>1.0f</code> is a <code>float</code> value; * <code>1.0d</code> is a <code>double</code> value), do * <em>not</em> influence the results of this method. In other * words, the numerical value of the input string is converted * directly to the target floating-point type. The two-step * sequence of conversions, string to <code>float</code> followed * by <code>float</code> to <code>double</code>, is <em>not</em> * equivalent to converting a string directly to * <code>double</code>. For example, the <code>float</code> * literal <code>0.1f</code> is equal to the <code>double</code> * value <code>0.10000000149011612</code>; the <code>float</code> * literal <code>0.1f</code> represents a different numerical * value than the <code>double</code> literal * <code>0.1</code>. (The numerical value 0.1 cannot be exactly * represented in a binary floating-point number.) * * @param s the string to be parsed. * @return a <code>Double</code> object holding the value * represented by the <code>String</code> argument. * @exception NumberFormatException if the string does not contain a * parsable number. */ public static Double valueOf(String s) throws NumberFormatException { return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue()); } /** * Returns a new <code>double</code> initialized to the value * represented by the specified <code>String</code>, as performed * by the <code>valueOf</code> method of class * <code>Double</code>. * * @param s the string to be parsed. * @return the <code>double</code> value represented by the string * argument. * @exception NumberFormatException if the string does not contain * a parsable <code>double</code>. * @see java.lang.Double#valueOf(String) * @since 1.2 */ public static double parseDouble(String s) throws NumberFormatException { return FloatingDecimal.readJavaFormatString(s).doubleValue(); } /** * Returns <code>true</code> if the specified number is a * Not-a-Number (NaN) value, <code>false</code> otherwise. * * @param v the value to be tested. * @return <code>true</code> if the value of the argument is NaN; * <code>false</code> otherwise. */ static public boolean isNaN(double v) { return (v != v); } /** * Returns <code>true</code> if the specified number is infinitely * large in magnitude, <code>false</code> otherwise. * * @param v the value to be tested. * @return <code>true</code> if the value of the argument is positive * infinity or negative infinity; <code>false</code> otherwise. */ static public boolean isInfinite(double v) { return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); } /** * The value of the Double. * * @serial */ private double value; /** * Constructs a newly allocated <code>Double</code> object that * represents the primitive <code>double</code> argument. * * @param value the value to be represented by the <code>Double</code>. */ public Double(double value) { this.value = value; } /** * Constructs a newly allocated <code>Double</code> object that * represents the floating-point value of type <code>double</code> * represented by the string. The string is converted to a * <code>double</code> value as if by the <code>valueOf</code> method. * * @param s a string to be converted to a <code>Double</code>. * @exception NumberFormatException if the string does not contain a * parsable number. * @see java.lang.Double#valueOf(java.lang.String) */ public Double(String s) throws NumberFormatException { // FIXME: this is inefficient this(valueOf(s).doubleValue()); } /** * Returns <code>true</code> if this <code>Double</code> value is * a Not-a-Number (NaN), <code>false</code> otherwise. * * @return <code>true</code> if the value represented by this object is * NaN; <code>false</code> otherwise. */ public boolean isNaN() { return isNaN(value); } /** * Returns <code>true</code> if this <code>Double</code> value is * infinitely large in magnitude, <code>false</code> otherwise. * * @return <code>true</code> if the value represented by this object is * positive infinity or negative infinity; * <code>false</code> otherwise. */ public boolean isInfinite() { return isInfinite(value); } /** * Returns a string representation of this <code>Double</code> object. * The primitive <code>double</code> value represented by this * object is converted to a string exactly as if by the method * <code>toString</code> of one argument. * * @return a <code>String</code> representation of this object. * @see java.lang.Double#toString(double) */ public String toString() { return String.valueOf(value); } /** * Returns the value of this <code>Double</code> as a <code>byte</code> (by * casting to a <code>byte</code>). * * @return the <code>double</code> value represented by this object * converted to type <code>byte</code> * @since JDK1.1 */ public byte byteValue() { return (byte)value; } /** * Returns the value of this <code>Double</code> as a * <code>short</code> (by casting to a <code>short</code>).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -