📄 inputstream.java
字号:
return -1; } b[off] = (byte)c; int i = 1; try { for (; i < len ; i++) { c = read(); if (c == -1) { break; } b[off + i] = (byte)c; } } catch (IOException ee) { } return i; } /** * Skips over and discards <code>n</code> bytes of data from this input * stream. The <code>skip</code> method may, for a variety of reasons, end * up skipping over some smaller number of bytes, possibly <code>0</code>. * This may result from any of a number of conditions; reaching end of file * before <code>n</code> bytes have been skipped is only one possibility. * The actual number of bytes skipped is returned. If <code>n</code> is * negative, no bytes are skipped. * * <p> The <code>skip</code> method of <code>InputStream</code> creates a * byte array and then repeatedly reads into it until <code>n</code> bytes * have been read or the end of the stream has been reached. Subclasses are * encouraged to provide a more efficient implementation of this method. * * @param n the number of bytes to be skipped. * @return the actual number of bytes skipped. * @exception IOException if an I/O error occurs. */ public long skip(long n) throws IOException { long remaining = n; int nr; if (skipBuffer == null) skipBuffer = new byte[SKIP_BUFFER_SIZE]; byte[] localSkipBuffer = skipBuffer; if (n <= 0) { return 0; } while (remaining > 0) { nr = read(localSkipBuffer, 0, (int) Math.min(SKIP_BUFFER_SIZE, remaining)); if (nr < 0) { break; } remaining -= nr; } return n - remaining; } /** * Returns the number of bytes that can be read (or skipped over) from * this input stream without blocking by the next caller of a method for * this input stream. The next caller might be the same thread or or * another thread. * * <p> The <code>available</code> method for class <code>InputStream</code> * always returns <code>0</code>. * * <p> This method should be overridden by subclasses. * * @return the number of bytes that can be read from this input stream * without blocking. * @exception IOException if an I/O error occurs. */ public int available() throws IOException { return 0; } /** * Closes this input stream and releases any system resources associated * with the stream. * * <p> The <code>close</code> method of <code>InputStream</code> does * nothing. * * @exception IOException if an I/O error occurs. */ public void close() throws IOException {} /** * Marks the current position in this input stream. A subsequent call to * the <code>reset</code> method repositions this stream at the last marked * position so that subsequent reads re-read the same bytes. * * <p> The <code>readlimit</code> arguments tells this input stream to * allow that many bytes to be read before the mark position gets * invalidated. * * <p> The general contract of <code>mark</code> is that, if the method * <code>markSupported</code> returns <code>true</code>, the stream somehow * remembers all the bytes read after the call to <code>mark</code> and * stands ready to supply those same bytes again if and whenever the method * <code>reset</code> is called. However, the stream is not required to * remember any data at all if more than <code>readlimit</code> bytes are * read from the stream before <code>reset</code> is called. * * <p> The <code>mark</code> method of <code>InputStream</code> does * nothing. * * @param readlimit the maximum limit of bytes that can be read before * the mark position becomes invalid. * @see java.io.InputStream#reset() */ public synchronized void mark(int readlimit) {} /** * Repositions this stream to the position at the time the * <code>mark</code> method was last called on this input stream. * * <p> The general contract of <code>reset</code> is: * * <p><ul> * * <li> If the method <code>markSupported</code> returns * <code>true</code>, then: * * <ul><li> If the method <code>mark</code> has not been called since * the stream was created, or the number of bytes read from the stream * since <code>mark</code> was last called is larger than the argument * to <code>mark</code> at that last call, then an * <code>IOException</code> might be thrown. * * <li> If such an <code>IOException</code> is not thrown, then the * stream is reset to a state such that all the bytes read since the * most recent call to <code>mark</code> (or since the start of the * file, if <code>mark</code> has not been called) will be resupplied * to subsequent callers of the <code>read</code> method, followed by * any bytes that otherwise would have been the next input data as of * the time of the call to <code>reset</code>. </ul> * * <li> If the method <code>markSupported</code> returns * <code>false</code>, then: * * <ul><li> The call to <code>reset</code> may throw an * <code>IOException</code>. * * <li> If an <code>IOException</code> is not thrown, then the stream * is reset to a fixed state that depends on the particular type of the * input stream and how it was created. The bytes that will be supplied * to subsequent callers of the <code>read</code> method depend on the * particular type of the input stream. </ul></ul> * * <p> The method <code>reset</code> for class <code>InputStream</code> * does nothing and always throws an <code>IOException</code>. * * @exception IOException if this stream has not been marked or if the * mark has been invalidated. * @see java.io.InputStream#mark(int) * @see java.io.IOException */ public synchronized void reset() throws IOException { throw new IOException("mark/reset not supported"); } /** * Tests if this input stream supports the <code>mark</code> and * <code>reset</code> methods. Whether or not <code>mark</code> and * <code>reset</code> are supported is an invariant property of a * particular input stream instance. The <code>markSupported</code> method * of <code>InputStream</code> returns <code>false</code>. * * @return <code>true</code> if this stream instance supports the mark * and reset methods; <code>false</code> otherwise. * @see java.io.InputStream#mark(int) * @see java.io.InputStream#reset() */ public boolean markSupported() { return false; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -