📄 clpolydv.m
字号:
% CLPOLYDV.M Compute derivatives of
% f(x)=2x^4-7x^3+5x^2-1
% Compare diff and polyder results
p=[2 -7 5 0 -1]; % Coefficients
pd=polyder(p) % Polynomial derivative
xi=linspace(0,3,100); % 0-3 for 100 points
yder=polyval(pd,xi); % Evaluate at xi
%
% Derivative using diff
%
x=[0:.5:3]; % Coarse interval
y=2*x.^4-7*x.^3+5*x.^2-1;
% Using diff with 6 points
dely=diff(y)./diff(x);
xd=x(1:length(x)-1)
%
% More accurate diff using 100 points
yder99=2*xi.^4-7*xi.^3+5*xi.^2-1;
dely1=diff(yder99)./diff(xi);
xd1=xi(1:length(xi)-1)
%
clf % Clear any figures
plot(xi,yder,'-'),hold on % Ployder
plot(xd1,dely1,'-.') % diff 99 points
plot(xd,dely,'o') % diff 6 points
title('Derivative Approximations')
xlabel('x'),ylabel('Dy')
legend('polyder','diff 99pts','diff 6pts')
hold off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -