📄 ex8_2.m
字号:
% EX8_2.M Plot the Fourier series of the function f(t)
% f(t)=0 -pi < t < 0
% f(t)=t 0 < t < pi
%
% Plot f(t) for 5 and 20 terms in the series
clear
t =[-pi:.031:pi]; % Time points for plotting
sizet=size(t);
fn = pi/4*(ones(sizet)); % Fourier approximation at each t
yplt=zeros(sizet); % for plot of f(t)
% 5 terms
for n=1:5
fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n);
end
%
for k=1:length(t) % Create f(t)
if t(k) < 0
yplt(k)=0;
else
yplt(k)=t(k);
end
end
clf % Clear any figures
subplot(2,1,1),plot(t,fn,t,yplt,'--');
xlabel('t')
ylabel('f(t)')
title('Fourier series approximation to f(t) - Figure 8.2')
legend(['N=',num2str(n)],'f(t)') % Annotate the graph
% Add 15 more terms
for n=6:20
fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n);
end
subplot(2,1,2),plot(t,fn,t,yplt,'--');
xlabel('t')
ylabel('f(t)')
legend(['N=',num2str(n)],'f(t)')
%
% Modify the program to compute an arbitrary number of terms
% in the series (i.e. input n). Plot the graph for many terms
% and notice the overshoot at the ends of the interval no matter
% how many terms are taken.
% (This is explained in the text as the Gibbs phenomenon.)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -