📄 ex5_18.m
字号:
% EX5_18.M Use MATLAB ode23 to solve the system
% y1''=-2y1+ y2
% y2''= y1-2y2
% transformed into the system xdot=Ax where A is 4x4
% INPUTS: Initial time, final time, initial conditions and title
% OUTPUT: A (global variable); Plot of motion y1(t), y2(t)
% Pass A to function CLDESF
A=[0 0 1 0;0 0 0 1;-2 1 0 0;1 -2 0 0] % System matrix
t0=input('Initial time= ')
tf=input('Final time= ')
x0=input('[y1(t0) y2(t0) doty1(t0) doty2(t0)] = ')
x0t=x0'; % Transpose of initial conditions for ode23
% Calls function cldesf to define state equations.
[t,x]=ode23('cldesf',[t0,tf],x0t,[],A); % Numerical solution of system
% y values
y1=x(:,1); % Change to physical variables in example
y2=x(:,2);
% Plot y1 and y2, the motion of the masses
titlef=input('Title= ','s') % Input the title
subplot(2,1,1),plot(t,y1) % Plot two graphs on one axis
ylabel('Displacement y1')
subplot(2,1,2),plot(t,y2)
ylabel('Displacement y2')
xlabel('Time')
title(eval('titlef'))
%
% Modify the file to allow different values of A to be input and
% solve the system with other values of k1, m1 and k2, m2 in
% Example 5.18
%
% Version 5 Change call to ode23
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -