⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cluster.h

📁 一个google的OCR源码
💻 H
字号:
/****************************************************************************** **	Filename:	cluster.h **	Purpose:	Definition of feature space clustering routines **	Author:		Dan Johnson **	History:	5/29/89, DSJ, Created. ** **	(c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/#ifndef   CLUSTER_H#define   CLUSTER_H#include "kdtree.h"#include "oldlist.h"/*----------------------------------------------------------------------          Types----------------------------------------------------------------------*/typedef struct sample{  unsigned Clustered:1;          // TRUE if included in a higher cluster  unsigned Prototype:1;          // TRUE if cluster represented by a proto  unsigned SampleCount:30;       // number of samples in this cluster  struct sample *Left;           // ptr to left sub-cluster  struct sample *Right;          // ptr to right sub-cluster  inT32 CharID;                  // identifier of char sample came from  FLOAT32 Mean[1];               // mean of cluster - SampleSize floats}CLUSTER;typedef CLUSTER SAMPLE;          // can refer to as either sample or clustertypedef enum {  spherical, elliptical, mixed, automatic}PROTOSTYLE;typedef struct                   // parameters to control clustering{  PROTOSTYLE ProtoStyle;         // specifies types of protos to be made  FLOAT32 MinSamples;            // min # of samples per proto - % of total  FLOAT32 MaxIllegal;            // max percentage of samples in a cluster which have  // more than 1 feature in that cluster  FLOAT32 Independence;          // desired independence between dimensions  FLOAT64 Confidence;            // desired confidence in prototypes created  int MagicSamples;              // Ideal number of samples in a cluster.}CLUSTERCONFIG;typedef enum {  normal, uniform, D_random}DISTRIBUTION;typedef union{  FLOAT32 Spherical;  FLOAT32 *Elliptical;}FLOATUNION;typedef struct proto{  unsigned Significant:1;        // TRUE if prototype is significant  unsigned Merged:1;             // Merged after clustering so do not output                                 // but kept for display purposes. If it has no                                 // samples then it was actually merged.                                 // Otherwise it matched an already significant                                 // cluster.  unsigned Style:2;              // spherical, elliptical, or mixed  unsigned NumSamples:28;        // number of samples in the cluster  CLUSTER *Cluster;              // ptr to cluster which made prototype  DISTRIBUTION *Distrib;         // different distribution for each dimension  FLOAT32 *Mean;                 // prototype mean  FLOAT32 TotalMagnitude;        // total magnitude over all dimensions  FLOAT32 LogMagnitude;          // log base e of TotalMagnitude  FLOATUNION Variance;           // prototype variance  FLOATUNION Magnitude;          // magnitude of density function  FLOATUNION Weight;             // weight of density function}PROTOTYPE;typedef struct{  inT16 SampleSize;              // number of parameters per sample  PARAM_DESC *ParamDesc;         // description of each parameter  inT32 NumberOfSamples;         // total number of samples being clustered  KDTREE *KDTree;                // for optimal nearest neighbor searching  CLUSTER *Root;                 // ptr to root cluster of cluster tree  LIST ProtoList;                // list of prototypes  inT32 NumChar;                 // # of characters represented by samples}CLUSTERER;typedef struct{  inT32 NumSamples;              // number of samples in list  inT32 MaxNumSamples;           // maximum size of list  SAMPLE *Sample[1];             // array of ptrs to sample data structures}SAMPLELIST;// low level cluster tree analysis routines.#define InitSampleSearch(S,C) (((C)==NULL)?(S=NIL):(S=push(NIL,(C))))/*--------------------------------------------------------------------------        Public Function Prototypes--------------------------------------------------------------------------*/CLUSTERER *MakeClusterer (inT16 SampleSize, PARAM_DESC ParamDesc[]);SAMPLE *MakeSample (CLUSTERER * Clusterer, FLOAT32 Feature[], inT32 CharID);LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config);void FreeClusterer(CLUSTERER *Clusterer);void FreeProtoList(LIST *ProtoList);void FreePrototype(void *arg);  //PROTOTYPE     *Prototype);CLUSTER *NextSample(LIST *SearchState);FLOAT32 Mean(PROTOTYPE *Proto, uinT16 Dimension);FLOAT32 StandardDeviation(PROTOTYPE *Proto, uinT16 Dimension);inT32 MergeClusters(inT16 N, PARAM_DESC ParamDesc[], inT32 n1, inT32 n2,                    FLOAT32 m[], FLOAT32 m1[], FLOAT32 m2[]);//--------------Global Data Definitions and Declarations---------------------------// define errors that can be trapped#define ALREADYCLUSTERED  4000#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -