📄 aaaa.m
字号:
function [sys,x0,str,ts] = aaaa(t,x,u,flag)
%SFUNTMPL General M-file S-function template
% With M-file S-functions, you can define you own ordinary differential
% equations (ODEs), discrete system equations, and/or just about
% any type of algorithm to be used within a Simulink block diagram.
%
% The general form of an M-File S-function syntax is:
% [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
% What is returned by SFUNC at a given point in time, T, depends on the
% value of the FLAG, the current state vector, X, and the current
% input vector, U.
%
% FLAG RESULT DESCRIPTION
% ----- ------ --------------------------------------------
% 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
% initial state in X0, state ordering strings
% in STR, and sample times in TS.
% 1 DX Return continuous state derivatives in SYS.
% 2 DS Update discrete states SYS = X(n+1)
% 3 Y Return outputs in SYS.
% 4 TNEXT Return next time hit for variable step sample
% time in SYS.
% 5 Reserved for future (root finding).
% 9 [] Termination, perform any cleanup SYS=[].
%
%
% The state vectors, X and X0 consists of continuous states followed
% by discrete states.
%
% Optional parameters, P1,...,Pn can be provided to the S-function and
% used during any FLAG operation.
%
% When SFUNC is called with FLAG = 0, the following information
% should be returned:
%
% SYS(1) = Number of continuous states.
% SYS(2) = Number of discrete states.
% SYS(3) = Number of outputs.
% SYS(4) = Number of inputs.
% Any of the first four elements in SYS can be specified
% as -1 indicating that they are dynamically sized. The
% actual length for all other flags will be equal to the
% length of the input, U.
% SYS(5) = Reserved for root finding. Must be zero.
% SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
% has direct feedthrough if U is used during the FLAG=3
% call. Setting this to 0 is akin to making a promise that
% U will not be used during FLAG=3. If you break the promise
% then unpredictable results will occur.
% SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
% X0 = Initial state conditions or [] if no states.
%
% STR = State ordering strings which is generally specified as [].
%
% TS = An m-by-2 matrix containing the sample time
% (period, offset) information. Where m = number of sample
% times. The ordering of the sample times must be:
%
% TS = [0 0, : Continuous sample time.
% 0 1, : Continuous, but fixed in minor step
% sample time.
% PERIOD OFFSET, : Discrete sample time where
% PERIOD > 0 & OFFSET < PERIOD.
% -2 0]; : Variable step discrete sample time
% where FLAG=4 is used to get time of
% next hit.
%
% There can be more than one sample time providing
% they are ordered such that they are monotonically
% increasing. Only the needed sample times should be
% specified in TS. When specifying more than one
% sample time, you must check for sample hits explicitly by
% seeing if
% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
% is within a specified tolerance, generally 1e-8. This
% tolerance is dependent upon your model's sampling times
% and simulation time.
%
% You can also specify that the sample time of the S-function
% is inherited from the driving block. For functions which
% change during minor steps, this is done by
% specifying SYS(7) = 1 and TS = [-1 0]. For functions which
% are held during minor steps, this is done by specifying
% SYS(7) = 1 and TS = [-1 1].
% Copyright 1990-2007 The MathWorks, Inc.
% $Revision: 1.18.2.2 $
%
% The following outlines the general structure of an S-function.
%
switch flag,
%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 3,
sys=mdlOutputs(u);
%%%%%%%%%%%%%%%%%%%%%%%
% GetTimeOfNextVarHit %
%%%%%%%%%%%%%%%%%%%%%%%
case {1,2,4,9}
sys=[];
%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
% end sfuntmpl
%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts]=mdlInitializeSizes
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = (1/31978); % at least one sample time is needed
sys = simsizes(sizes);
%
% initialize the initial conditions
%
x0 = [];
%
% str is always an empty matrix
%
str = [];
%
% initialize the array of sample times
%
ts = [-1 0];
% end mdlInitializeSizes
%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
%function sys=mdlDerivatives(t,x,u)
%sys = [];
% end mdlDerivatives
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
%function sys=mdlUpdate(t,x,u)
%sys = [];
% end mdlUpdate
%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(u)
%输入:IShapeOutput QShapeOutput
%输出:采样时钟输出
baud_frac = 0;%波特分量
Energy1 = 0;%第一点能量
Energy5 = 0;%第五点能量
Energy13 = 0;%第十三点能量
Energy = zeros(1,16);%一波特16点各点能量
th3 = 0.2;%Threshold for zero cross
th2 = 0.012;%Threshold for Clock Recovery
clock_corrected = 0;%是否同步标志位
clear_clock_corrected = 0;%是否清零同步标志位
clerror = 0;%第十三点与第五点能量差
clerror1 = 0;
clerror_sig = 0;%经环路滤波器计算后能量差信息
clerror_sig1 = 0;
DPSK_CPLL2 = 0.1;%The current value contribution to clock recovery
CPLL1 = 0.65;%Filter coefficient for the Clock Recovery loop filter.
%位同步
IShapeOutput = u(1);
QShapeOutput = u(2);
%在下一波特第8点时同步标志位清零并且输出采样时钟
if (clear_clock_corrected == 1) && (baud_frac == 8)
clear_clock_corrected = 0;
clock_corrected = 0;
sys = 1;%输出采样时钟
else
sys = 0;
end
baud_frac = baud_frac + 1;%波特分量增加
%计算当前点能量
Energy(1,baud_frac) = IShapeOutput * IShapeOutput + QShapeOutput * QShapeOutput;
%计算第一点能量
if baud_frac == 1
Energy1 = IShapeOutput * IShapeOutput + QShapeOutput * QShapeOutput;
end
%计算第十三点能量
if baud_frac == 13
Energy13 = IShapeOutput * IShapeOutput + QShapeOutput * QShapeOutput;
end
%计算第五点能量
if (baud_frac == 5)&&(Energy1 < th3)
Energy5 = IShapeOutput * IShapeOutput + QShapeOutput * QShapeOutput;
%判断是否同步
if (clock_corrected == 0)
clerror = Energy13 - Energy5;%计算能量差
clerror_sig = clerror * DPSK_CPLL2 + clerror_sig * CPLL1;%通过一阶环路计算位同步误差
clerror_sig_watch = [clerror_sig_watch clerror_sig];%环路滤波器输出矩阵
%判决是否已锁定
if abs(clerror_sig) < th2%误差绝对值小于门限值
clock_corrected = 1;
end
if clerror_sig > 0
%误差大于二倍的门限
if clerror_sig > (th2 * 2)
baud_frac = baud_frac - 2;%调整两个步长
%循环调整能量数组
temp1 = Energy(1,1);
temp2 = Energy(1,2);
for k = 1:1:14
Energy(1,k) = Energy(1,k+2);
end
Energy(1,15) = temp1;
Energy(1,16) = temp2;
Energy13 = Energy(1,13);
Energy1 = Energy(1,1);
%误差大于一倍的门限
elseif clerror_sig > th2
baud_frac = baud_frac - 1;%调整一个步长
%循环调整能量数组
temp1 = Energy(1,1);
for k = 1:1:15
Energy(1,k) = Energy(1,k+1);
end
Energy(1,16) = temp1;
Energy13 = Energy(1,13);
Energy1 = Energy(1,1);
end
else
%误差小于负二倍的门限
if clerror_sig < (-th2 * 2)
baud_frac = baud_frac + 2;%调整两个步长
%循环调整能量数组
temp1 = Energy(1,15);
temp2 = Energy(1,16);
for k = 16:-1:3
Energy(1,k) = Energy(1,k-2);
end
Energy(1,2) = temp2;
Energy(1,1) = temp1;
Energy13 = Energy(1,13);
Energy1 = Energy(1,1);
elseif clerror_sig < -th2
baud_frac = baud_frac + 1;%调整一个步长
%循环调整能量数组
temp1 = Energy(1,16);
for k = 16:-1:2
Energy(1,k) = Energy(1,k-1);
end
Energy(1,1) = temp1;
Energy13 = Energy(1,13);
Energy1 = Energy(1,1);
end
end
end
%出错情况下,大幅度调整8个步长
if (Energy13 < Energy1) && (Energy5 < Energy1)
baud_frac = baud_frac + 8;
end
end
if baud_frac >= 16
baud_frac = 0;%一波特已完
clear_clock_corrected = 1;%同步标志位清零条件部分满足
end
%位同步结束
% end mdlOutputs
%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the result is
% absolute time. Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
%function sys=mdlGetTimeOfNextVarHit(t,x,u)
%sampleTime = 1; % Example, set the next hit to be one second later.
%sys = t + sampleTime;
% end mdlGetTimeOfNextVarHit
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
%function sys=mdlTerminate(t,x,u)
%sys = [];
% end mdlTerminate
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -