📄 perform_wavelet_transf.m.svn-base
字号:
function x = perform_wavelet_transf(x, Jmin, dir, options)
% perform_wavelet_transf - peform fast lifting transform
%
% y = perform_wavelet_transf(x, Jmin, dir, options);
%
% Implement 1D and 2D symmetric wavelets with symmetric boundary treatements, using
% a lifting implementation.
%
% h = options.filter gives the coefficients of the lifting filter.
% You can use h='linear' or h='7-9' to select automatically biorthogonal
% transform with 2 and 4 vanishing moments.
%
% You can set options.ti=1 to compute a translation invariant wavelet
% transform.
%
% You can set options.separable=1 to compute a separable 2D wavelet
% transform.
%
% Copyright (c) 2008 Gabriel Peyre
options.null = 0;
h = getoptions(options, 'filter', '9-7');
if isstr(h)
% P/U/P/U/etc the last coefficient is scaling
switch lower(h)
case {'linear' '5-3'}
h = [1/2 1/4 sqrt(2)];
case {'9-7' '7-9'}
h = [1.586134342 -.05298011854 -.8829110762 .4435068522 1.149604398];
otherwise
error('Unknown filter');
end
end
% detect dimensionality
% d = getoptions(options,'ndims',-1);
d = -1;
if isfield(options, 'ndims')
ndims = options.ndims;
end
if d<0
if size(x,1)==1 || size(x,2)==1
d = 1;
else
d = 2;
end
end
if d==1 && size(x,1)==1
warning('For 1D transform, the vector should be a column vector.');
x = x(:);
end
ti = getoptions(options, 'ti', 0);
separable = getoptions(options, 'separable', 0);
if d==2 && separable==1
options.ti = 0;
if ti==1
warning('Separable does not works for translation invariant transform');
end
% perform a separable wavelet transform
n = size(x,1);
if dir==1
for i=1:n
x(:,i) = perform_wavelet_transf(x(:,i),Jmin,dir,options);
end
for i=1:n
x(i,:) = perform_wavelet_transf(x(i,:)',Jmin,dir,options)';
end
else
for i=1:n
x(i,:) = perform_wavelet_transf(x(i,:)',Jmin,dir,options)';
end
for i=1:n
x(:,i) = perform_wavelet_transf(x(:,i),Jmin,dir,options);
end
end
return;
end
% number of lifting steps
n = size(x,1);
m = (length(h)-1)/2;
Jmax = log2(n)-1;
jlist = Jmax:-1:Jmin;
if dir==-1
jlist = jlist(end:-1:1);
end
if ti==0
% subsampled
for j=jlist
if d==1
x(1:2^(j+1),:) = lifting_step( x(1:2^(j+1),:), h, dir);
else
x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1)), h, dir);
x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1))', h, dir)';
end
end
else
% TI
nJ = Jmax-Jmin+1;
if dir==1 && d==1
x = repmat(x,[1 1 nJ+1]);
elseif dir==1 && d==2
x = repmat(x,[1 1 3*nJ+1]);
end
for j=jlist
dist = 2^(Jmax-j);
if d==1
if dir==1
x(:,:,[1 j-Jmin+2]) = lifting_step_ti( x(:,:,1), h, dir, dist);
else
x(:,:,1) = lifting_step_ti( x(:,:,[1 j-Jmin+2]), h, dir, dist);
end
else
dj = 3*(j-Jmin);
if dir==1
x(:,:,[1 dj+2]) = lifting_step_ti( x(:,:,1), h, dir, dist);
x(:,:,[1 dj+3]) = lifting_step_ti( x(:,:,1)', h, dir, dist);
x(:,:,1) = x(:,:,1)'; x(:,:,dj+3) = x(:,:,dj+3)';
x(:,:,[dj+[2 4]]) = lifting_step_ti( x(:,:,dj+2)', h, dir, dist);
x(:,:,dj+2) = x(:,:,dj+2)';
x(:,:,dj+4) = x(:,:,dj+4)';
else
x(:,:,dj+2) = x(:,:,dj+2)';
x(:,:,dj+4) = x(:,:,dj+4)';
x(:,:,dj+2) = lifting_step_ti( x(:,:,[dj+[2 4]]), h, dir, dist)';
x(:,:,1) = x(:,:,1)';
x(:,:,dj+3) = x(:,:,dj+3)';
x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+3]), h, dir, dist)';
x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+2]), h, dir, dist);
end
end
end
if dir==-1
x = x(:,:,1);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = lifting_step(x, h, dir)
% number of lifting steps
m = (length(h)-1)/2;
if dir==1
% split
d = x(2:2:end,:);
x = x(1:2:end,:);
for i=1:m
d = d - h(2*i-1) * ( x + x([2:end end],:) );
x = x + h(2*i ) * ( d + d([1 1:end-1],:) );
end
x = [x*h(end);d/h(end)];
else
% retrieve detail coefs
d = x(end/2+1:end,:)*h(end);
x = x(1:end/2,:)/h(end);
for i=m:-1:1
x = x - h(2*i ) * ( d + d([1 1:end-1],:) );
d = d + h(2*i-1) * ( x + x([2:end end],:) );
end
% merge
x1 = zeros(size(x,1)*2,size(x,2));
x1(1:2:end,:) = x;
x1(2:2:end,:) = d;
x = x1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = lifting_step_ti(x, h, dir, dist)
% number of lifting steps
m = (length(h)-1)/2;
n = size(x,1);
s1 = (1:n)+dist;
s2 = (1:n)-dist;
% boundary conditions
s1(s1>n) = 2*n-s1(s1>n); s1(s1<1) = 2-s1(s1<1);
s2(s2>n) = 2*n-s2(s2>n); s2(s2<1) = 2-s2(s2<1);
% s1 = [2 1:n-1]; s2 = [2:n n-1];
if dir==1
% split
d = x;
for i=1:m
d = d - h(2*i-1) * ( x(s1,:) + x(s2,:) );
x = x + h(2*i ) * ( d(s1,:) + d(s2,:) );
end
x = cat(3,x*h(end),d/h(end));
else
% retrieve detail coefs
d = x(:,:,2)*h(end);
x = x(:,:,1)/h(end);
for i=m:-1:1
x = x - h(2*i ) * ( d(s1,:) + d(s2,:) );
d = d + h(2*i-1) * ( x(s1,:) + x(s2,:) );
end
% merge
x = (x+d)/2;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -