📄 efield2.m
字号:
%EFIELD2 Radiated/scattered field over a large sphere
% Uses the mesh file from RWG2, mesh2.mat, and
% the file containing surface current coefficients,
% current.mat, from RWG4 as inputs.
%
% Uses the structure sphere.mat/sphere1.mat to display
% radiation intensity distribution over the sphere surface.
% The sphere doesn't intersect the radiating object.
%
% The following parameters need to be specified:
%
% Sphere radius (m)
%
% Copyright 2002 AEMM. Revision 2002/03/11
% Chapter 3
clear all
%Load the data
load('mesh2');
load('current');
load('sphere');
p=100*p; %sphere radius is 100 m
k=omega/c_;
K=j*k;
for m=1:EdgesTotal
Point1=Center(:,TrianglePlus(m));
Point2=Center(:,TriangleMinus(m));
DipoleCenter(:,m)=0.5*(Point1+Point2);
DipoleMoment(:,m)=EdgeLength(m)*I(m)*(-Point1+Point2);
end
TotalPower=0;
%Sphere series
M=length(t);
for m=1:M
N=t(1:3,m);
ObservationPoint=1/3*sum(p(:,N),2);
[E,H]=point(ObservationPoint,eta_,K,DipoleMoment,DipoleCenter);
ET=sum(E,2); HT=sum(H,2);
Poynting(:,m)=0.5*real(cross(ET,conj(HT)));
U(m)=(norm(ObservationPoint))^2*norm(Poynting(:,m));
Vector1=p(:,N(1))-p(:,N(2));
Vector2=p(:,N(3))-p(:,N(2));
Area =0.5*norm(cross(Vector1,Vector2));
TotalPower=TotalPower+norm(Poynting(:,m))*Area;
%------------------------------
X(1:3,m)=[p(1,N)]';
Y(1:3,m)=[p(2,N)]';
Z(1:3,m)=[p(3,N)]';
end
TotalPower
GainLogarithmic =10*log10(4*pi*max(U)/TotalPower)
GainLinear =4*pi*max(U)/TotalPower
RadiationResistance =2*TotalPower/abs(GapCurrent)^2
FileName='gainpower.mat';
save(FileName, 'TotalPower','GainLogarithmic','GainLinear');
U=U/norm(U);
C=repmat(U,3,1);
h=fill3(X,Y,Z,C);
colormap gray;
axis('equal')
rotate3d on
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -