⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsf.c

📁 视频监控vc源代码.对于做视频系统的朋友们很有帮助
💻 C
字号:
/******************************************************************    iLBC Speech Coder ANSI-C Source Code    lsf.c     Copyright (C) The Internet Society (2004).     All Rights Reserved.******************************************************************/#include <string.h>#include <math.h>#include "iLBC_define.h"#include "lsf.h"/*----------------------------------------------------------------* *  conversion from lpc coefficients to lsf coefficients  *---------------------------------------------------------------*/void a2lsf(     float *freq,/* (o) lsf coefficients */    float *a    /* (i) lpc coefficients */){    float steps[LSF_NUMBER_OF_STEPS] =         {(float)0.00635, (float)0.003175, (float)0.0015875,         (float)0.00079375};    float step;    int step_idx;    int lsp_index;      float p[LPC_HALFORDER];    float q[LPC_HALFORDER];    float p_pre[LPC_HALFORDER];    float q_pre[LPC_HALFORDER];    float old_p, old_q, *old;    float *pq_coef;     float omega, old_omega;    int i;    float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;    for (i=0; i<LPC_HALFORDER; i++) {        p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);        q[i] = a[LPC_FILTERORDER - i] - a[i + 1];    }        p_pre[0] = (float)-1.0 - p[0];    p_pre[1] = - p_pre[0] - p[1];    p_pre[2] = - p_pre[1] - p[2];    p_pre[3] = - p_pre[2] - p[3];    p_pre[4] = - p_pre[3] - p[4];    p_pre[4] = p_pre[4] / 2;        q_pre[0] = (float)1.0 - q[0];    q_pre[1] = q_pre[0] - q[1];    q_pre[2] = q_pre[1] - q[2];    q_pre[3] = q_pre[2] - q[3];    q_pre[4] = q_pre[3] - q[4];    q_pre[4] = q_pre[4] / 2;        omega = 0.0;    old_omega = 0.0;    old_p = FLOAT_MAX;    old_q = FLOAT_MAX;        /* Here we loop through lsp_index to find all the        LPC_FILTERORDER roots for omega. */      for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {                /* Depending on lsp_index being even or odd, we         alternatively solve the roots for the two LSP equations. */                if ((lsp_index & 0x1) == 0) {            pq_coef = p_pre;            old = &old_p;        } else {            pq_coef = q_pre;            old = &old_q;        }                /* Start with low resolution grid */        for (step_idx = 0, step = steps[step_idx];             step_idx < LSF_NUMBER_OF_STEPS;){                        /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +             pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */            hlp = (float)cos(omega * TWO_PI);            hlp1 = (float)2.0 * hlp + pq_coef[0];            hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +                 pq_coef[1];            hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];            hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];            hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];                                    if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){                                if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){                                        if (fabs(hlp5) >= fabs(*old)) {                        freq[lsp_index] = omega - step;                    } else {                        freq[lsp_index] = omega;                    }                                                               if ((*old) >= 0.0){                        *old = (float)-1.0 * FLOAT_MAX;                    } else {                        *old = FLOAT_MAX;                    }                    omega = old_omega;                    step_idx = 0;                                        step_idx = LSF_NUMBER_OF_STEPS;                } else {                                        if (step_idx == 0) {                        old_omega = omega;                    }                    step_idx++;                    omega -= steps[step_idx];                    /* Go back one grid step */                    step = steps[step_idx];                }            } else {                            /* increment omega until they are of different sign,             and we know there is at least one root between omega             and old_omega */                *old = hlp5;                omega += step;            }        }    }    for (i = 0; i<LPC_FILTERORDER; i++) {        freq[i] = freq[i] * TWO_PI;    }}/*----------------------------------------------------------------* *  conversion from lsf coefficients to lpc coefficients  *---------------------------------------------------------------*/void lsf2a(     float *a_coef,  /* (o) lpc coefficients */    float *freq     /* (i) lsf coefficients */){    int i, j;    float hlp;    float p[LPC_HALFORDER], q[LPC_HALFORDER];    float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],        a2[LPC_HALFORDER];    float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER],         b2[LPC_HALFORDER];    for (i=0; i<LPC_FILTERORDER; i++) {        freq[i] = freq[i] * PI2;    }    /* Check input for ill-conditioned cases.  This part is not     found in the TIA standard.  It involves the following 2 IF     blocks. If "freq" is judged ill-conditioned, then we first     modify freq[0] and freq[LPC_HALFORDER-1] (normally     LPC_HALFORDER = 10 for LPC applications), then we adjust     the other "freq" values slightly */        if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){                if (freq[0] <= 0.0) {            freq[0] = (float)0.022;        }                if (freq[LPC_FILTERORDER - 1] >= 0.5) {            freq[LPC_FILTERORDER - 1] = (float)0.499;        }        hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /             (float) (LPC_FILTERORDER - 1);        for (i=1; i<LPC_FILTERORDER; i++) {            freq[i] = freq[i - 1] + hlp;        }    }        memset(a1, 0, LPC_HALFORDER*sizeof(float));    memset(a2, 0, LPC_HALFORDER*sizeof(float));    memset(b1, 0, LPC_HALFORDER*sizeof(float));    memset(b2, 0, LPC_HALFORDER*sizeof(float));    memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));    memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));            /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and     cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.      Note that for this code p[i] specifies the coefficients     used in .Q_A(z) while q[i] specifies the coefficients used     in .P_A(z) */    for (i=0; i<LPC_HALFORDER; i++) {        p[i] = (float)cos(TWO_PI * freq[2 * i]);        q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);    }        a[0] = 0.25;    b[0] = 0.25;        for (i= 0; i<LPC_HALFORDER; i++) {        a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];        b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];        a2[i] = a1[i];        a1[i] = a[i];        b2[i] = b1[i];        b1[i] = b[i];    }        for (j=0; j<LPC_FILTERORDER; j++) {                if (j == 0) {            a[0] = 0.25;            b[0] = -0.25;        } else {            a[0] = b[0] = 0.0;        }                for (i=0; i<LPC_HALFORDER; i++) {            a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];            b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];            a2[i] = a1[i];            a1[i] = a[i];            b2[i] = b1[i];            b1[i] = b[i];        }        a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);    }    a_coef[0] = 1.0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -