📄 control1_motor.lst
字号:
.................... float ceil(float x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fabs(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the absolute value of floating point number x
.................... // Returns : returns the absolute value of x
.................... // Date : N/A
.................... //
.................... #define fabs abs
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fmod(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the floating point remainder of x/y
.................... // Returns : returns the value of x= i*y, for some integer i such that, if y
.................... // is non zero, the result has the same isgn of x na dmagnitude less than the
.................... // magnitude of y. If y is zero then a domain error occurs.
.................... // Date : N/A
.................... //
....................
.................... float fmod(float x,float y)
.................... {
.................... float i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
....................
.................... //////////////////// Exponential and logarithmic functions ////////////////////
....................
.................... #define LN2 0.6931471806
....................
.................... float const pe[6] = {0.000207455774, 0.00127100575, 0.00965065093,
.................... 0.0554965651, 0.240227138, 0.693147172};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float exp(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (e^x)
.................... // Date : N/A
.................... //
.................... float exp(float x)
.................... {
.................... float y, res, r;
.................... signed int n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 88.722838)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed long)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
.................... *(&res) = n + 0x7F;
....................
.................... y = y/LN2 - (float)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
.................... /************************************************************/
....................
.................... float const pl[4] = {0.45145214, -9.0558803, 26.940971, -19.860189};
.................... float const ql[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the natural log of x
.................... // Date : N/A
.................... //
.................... float log(float x)
.................... {
.................... float y, res, r, y2;
.................... signed n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
.................... *(&y) = 0x7E;
....................
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl[0]*y2 + pl[1];
.................... res = res*y2 + pl[2];
.................... res = res*y2 + pl[3];
....................
.................... r = ql[0]*y2 + ql[1];
.................... r = r*y2 + ql[2];
.................... r = r*y2 + ql[3];
....................
.................... res = y*res/r;
....................
.................... n = *(&x) - 0x7E;
....................
.................... if (n<0)
.................... r = -(float)-n;
.................... else
.................... r = (float)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
....................
.................... #define LN10 2.30258509
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log10(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the log base 10 of x
.................... // Date : N/A
.................... //
.................... float log10(float x)
.................... {
.................... float r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float modf(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description :breaks the argument value int integral and fractional parts,
.................... // ach of which have the same sign as the argument. It stores the integral part
.................... // as a float in the object pointed to by the iptr
.................... // Returns : returns the signed fractional part of value.
.................... // Date : N/A
.................... //
....................
.................... float modf(float value,float *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
....................
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pwr(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... //
.................... float pwr(float x,float y)
.................... {
.................... if(x>=0)
.................... return( exp(y*log(x)) );
.................... else
.................... return( -exp(y*log(-x)) );
.................... }
....................
....................
.................... //////////////////// Power functions ////////////////////
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pow(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... //
.................... float pow(float x,float y)
.................... {
.................... if(x>=0)
.................... return( exp(y*log(x)) );
.................... else
.................... return( -exp(y*log(-x)) );
.................... }
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sqrt(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the square root of x
.................... // Date : N/A
.................... //
.................... float sqrt(float x)
.................... {
.................... float y, res;
.................... BYTE *p;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
.................... p=&y;
.................... (*p)=(BYTE)((((int16)(*p)) + 127) >> 1);
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
.................... (*p)--;
.................... } while(res != y);
....................
.................... return(res);
.................... }
....................
....................
....................
.................... ////////////////////////////// Trig Functions //////////////////////////////
.................... #ifdef PI_DIV_BY_TWO
.................... #undef PI_DIV_BY_TWO
.................... #endif
.................... #define PI_DIV_BY_TWO 1.570796326794896
.................... #ifdef TWOBYPI
.................... #undef TWOBYPI
.................... #define TWOBYPI 0.6366197724
.................... #endif
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float cos(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the cosine value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float cos(float x)
.................... {
.................... float y, t, t2 = 1.0;
.................... int quad, i;
.................... float frac;
.................... float p[4] = {
.................... -0.499999993585,
.................... 0.041666636258,
.................... -0.0013888361399,
.................... 0.00002476016134
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (int)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 0.999999999781;
.................... t = t * t;
.................... for (i = 0; i <= 3; i++)
.................... {
.................... t2 = t2 * t;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -