📄 qcd.cpp
字号:
#include <blitz/tinymat.h>
#include <blitz/vector.h>
#include <blitz/benchext.h>
#include <blitz/rand-uniform.h>
#ifdef BZ_HAVE_COMPLEX
BZ_USING_NAMESPACE(blitz)
#ifdef BZ_FORTRAN_SYMBOLS_WITH_TRAILING_UNDERSCORES
#define qcdf qcdf_
#define qcdf2 qcdf2_
#endif
#ifdef BZ_FORTRAN_SYMBOLS_CAPS
#define qcdf QCDF
#define qcdf2 QCDF2
#endif
extern "C" {
void qcdf(const void* M, void* res, const void* src, const int& N,
const int& iters);
void qcdf2(const void* M, void* res, const void* src, const int& N,
const int& iters);
}
int QCDBlitzVersion(BenchmarkExt<int>& bench);
int QCDBlitzTunedVersion(BenchmarkExt<int>& bench);
int QCDFortran77Version(BenchmarkExt<int>& bench);
int QCDFortran77TunedVersion(BenchmarkExt<int>& bench);
void initializeRandomDouble(double* data, int numElements);
int main()
{
cout << "Blitz++ QCD Benchmark" << endl
<< "Working... (this may take a while) ";
cout.flush();
BenchmarkExt<int> bench("Lattice QCD Benchmark", 4);
bench.setRateDescription("Millions of operations/s");
bench.beginBenchmarking();
QCDBlitzVersion(bench);
QCDBlitzTunedVersion(bench);
QCDFortran77Version(bench);
QCDFortran77TunedVersion(bench);
bench.endBenchmarking();
bench.saveMatlabGraph("qcd.m");
cout << "Done." << endl;
return 0;
}
int QCDBlitzVersion(BenchmarkExt<int>& bench)
{
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Blitz++");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
cout << "length = " << length << endl;
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
for (long i=0; i < iters; ++i)
{
for (int i=0; i < length; ++i)
res[i] = product(M[i], src[i]);
}
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> gaugeFieldElement;
struct latticeUnit {
spinor one;
gaugeFieldElement gauge;
spinor two;
};
int QCDBlitzTunedVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Blitz++ (tuned)");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<latticeUnit> lattice(length);
initializeRandomDouble((double*)lattice.data(),
length * sizeof(latticeUnit) / sizeof(double));
bench.start();
for (long i=0; i < iters; ++i)
{
for (int i=0; i < length; ++i)
lattice[i].two = product(lattice[i].gauge, lattice[i].one);
}
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
int QCDFortran77Version(BenchmarkExt<int>& bench)
{
// Use Blitz++ library only to allocate space for the
// arrays.
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Fortran 77");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
qcdf(M.data(), res.data(), src.data(), length, iters);
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
int QCDFortran77TunedVersion(BenchmarkExt<int>& bench)
{
// Use Blitz++ library only to allocate space for the
// arrays.
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Fortran 77 Hand-tuned");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
qcdf2(M.data(), res.data(), src.data(), length, iters);
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
void initializeRandomDouble(double* data, int numElements)
{
// This is a temporary kludge until I implement random complex
// numbers.
static Random<Uniform> rnd;
for (int i=0; i < numElements; ++i)
data[i] = rnd.random();
}
#else // BZ_HAVE_COMPLEX
#include <iostream.h>
int main()
{
cout << "This benchmark requires <complex> from the ISO/ANSI C++ standard."
<< endl;
return 0;
}
#endif // BZ_HAVE_COMPLEX
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -