📄 limits-hack.h
字号:
/*
* Severely hacked-up version of SGI/libstdc++ limits, for use with Blitz.
*/
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is not portable code. Parts of numeric_limits<> are
* inherently machine-dependent, and this file is written for the MIPS
* architecture and the SGI MIPSpro C++ compiler. Parts of it (in
* particular, some of the characteristics of floating-point types)
* are almost certainly incorrect for any other platform.
*/
#include <blitz/wrap-climits.h>
#include <float.h>
BZ_NAMESPACE(std)
enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3
};
enum float_denorm_style {
denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1
};
// Base class for all specializations of numeric_limits.
template <class __number>
class _Numeric_limits_base {
public:
static const bool is_specialized = false;
static __number min() { return __number(); }
static __number max() { return __number(); }
static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 0;
static __number epsilon() { return __number(); }
static __number round_error() { return __number(); }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static __number infinity() { return __number(); }
static __number quiet_NaN() { return __number(); }
static __number signaling_NaN() { return __number(); }
static __number denorm_min() { return __number(); }
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
#define __declare_numeric_base_member(__type, __mem) \
template <class __number> \
const __type _Numeric_limits_base<__number>:: __mem
__declare_numeric_base_member(bool, is_specialized);
__declare_numeric_base_member(int, digits);
__declare_numeric_base_member(int, digits10);
__declare_numeric_base_member(bool, is_signed);
__declare_numeric_base_member(bool, is_integer);
__declare_numeric_base_member(bool, is_exact);
__declare_numeric_base_member(int, radix);
__declare_numeric_base_member(int, min_exponent);
__declare_numeric_base_member(int, max_exponent);
__declare_numeric_base_member(int, min_exponent10);
__declare_numeric_base_member(int, max_exponent10);
__declare_numeric_base_member(bool, has_infinity);
__declare_numeric_base_member(bool, has_quiet_NaN);
__declare_numeric_base_member(bool, has_signaling_NaN);
__declare_numeric_base_member(float_denorm_style, has_denorm);
__declare_numeric_base_member(bool, has_denorm_loss);
__declare_numeric_base_member(bool, is_iec559);
__declare_numeric_base_member(bool, is_bounded);
__declare_numeric_base_member(bool, is_modulo);
__declare_numeric_base_member(bool, traps);
__declare_numeric_base_member(bool, tinyness_before);
__declare_numeric_base_member(float_round_style, round_style);
#undef __declare_numeric_base_member
// Base class for integers.
template <class _Int,
_Int __imin,
_Int __imax,
int __idigits = -1>
class _Integer_limits : public _Numeric_limits_base<_Int>
{
public:
static const bool is_specialized = true;
static _Int min() { return __imin; }
static _Int max() { return __imax; }
static const int digits =
(__idigits < 0) ? sizeof(_Int) * CHAR_BIT - (__imin == 0 ? 0 : 1)
: __idigits;
static const int digits10 = (digits * 301) / 1000;
// log 2 = 0.301029995664...
static const bool is_signed = __imin != 0;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const bool is_bounded = true;
static const bool is_modulo = true;
};
#define __declare_integer_limits_member(__type, __mem) \
template <class _Int, _Int __imin, _Int __imax, int __idigits> \
const __type _Integer_limits<_Int, __imin, __imax, __idigits>:: __mem
__declare_integer_limits_member(bool, is_specialized);
__declare_integer_limits_member(int, digits);
__declare_integer_limits_member(int, digits10);
__declare_integer_limits_member(bool, is_signed);
__declare_integer_limits_member(bool, is_integer);
__declare_integer_limits_member(bool, is_exact);
__declare_integer_limits_member(int, radix);
__declare_integer_limits_member(bool, is_bounded);
__declare_integer_limits_member(bool, is_modulo);
#undef __declare_integer_limits_member
// Base class for floating-point numbers.
template <class __number,
int __Digits, int __Digits10,
int __MinExp, int __MaxExp,
int __MinExp10, int __MaxExp10,
unsigned int __InfinityWord,
unsigned int __QNaNWord, unsigned int __SNaNWord,
bool __IsIEC559,
float_round_style __RoundStyle>
class _Floating_limits : public _Numeric_limits_base<__number>
{
public:
static const bool is_specialized = true;
static const int digits = __Digits;
static const int digits10 = __Digits10;
static const bool is_signed = true;
static const int radix = 2;
static const int min_exponent = __MinExp;
static const int max_exponent = __MaxExp;
static const int min_exponent10 = __MinExp10;
static const int max_exponent10 = __MaxExp10;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_indeterminate;
static const bool has_denorm_loss = false;
static __number infinity() {
static unsigned int _S_inf[sizeof(__number) / sizeof(int)] =
{ __InfinityWord };
return *reinterpret_cast<__number*>(&_S_inf);
}
static __number quiet_NaN() {
static unsigned int _S_nan[sizeof(__number) / sizeof(int)] =
{ __QNaNWord };
return *reinterpret_cast<__number*>(&_S_nan);
}
static __number signaling_NaN() {
static unsigned int _S_nan[sizeof(__number) / sizeof(int)] =
{ __SNaNWord };
return *reinterpret_cast<__number*>(&_S_nan);
}
static const bool is_iec559 = __IsIEC559;
static const bool is_bounded = true;
static const bool traps = true;
static const bool tinyness_before = false;
static const float_round_style round_style = __RoundStyle;
};
#define __declare_float_limits_member(__type, __mem) \
template <class __Num, int __Dig, int __Dig10, \
int __MnX, int __MxX, int __MnX10, int __MxX10, \
unsigned int __Inf, unsigned int __QNaN, unsigned int __SNaN, \
bool __IsIEEE, float_round_style __Sty> \
const __type _Floating_limits<__Num, __Dig, __Dig10, \
__MnX, __MxX, __MnX10, __MxX10, \
__Inf, __QNaN, __SNaN,__IsIEEE, __Sty>:: __mem
__declare_float_limits_member(bool, is_specialized);
__declare_float_limits_member(int, digits);
__declare_float_limits_member(int, digits10);
__declare_float_limits_member(bool, is_signed);
__declare_float_limits_member(int, radix);
__declare_float_limits_member(int, min_exponent);
__declare_float_limits_member(int, max_exponent);
__declare_float_limits_member(int, min_exponent10);
__declare_float_limits_member(int, max_exponent10);
__declare_float_limits_member(bool, has_infinity);
__declare_float_limits_member(bool, has_quiet_NaN);
__declare_float_limits_member(bool, has_signaling_NaN);
__declare_float_limits_member(float_denorm_style, has_denorm);
__declare_float_limits_member(bool, has_denorm_loss);
__declare_float_limits_member(bool, is_iec559);
__declare_float_limits_member(bool, is_bounded);
__declare_float_limits_member(bool, traps);
__declare_float_limits_member(bool, tinyness_before);
__declare_float_limits_member(float_round_style, round_style);
#undef __declare_float_limits_member
// Class numeric_limits
// The unspecialized class.
template<class T>
class numeric_limits : public _Numeric_limits_base<T> {};
// Specializations for all built-in integral types.
#ifndef __STL_NO_BOOL
template<>
class numeric_limits<bool>
: public _Integer_limits<bool, false, true, 0>
{};
#endif /* __STL_NO_BOOL */
template<>
class numeric_limits<char>
: public _Integer_limits<char, CHAR_MIN, CHAR_MAX>
{};
template<>
class numeric_limits<signed char>
: public _Integer_limits<signed char, SCHAR_MIN, SCHAR_MAX>
{};
template<>
class numeric_limits<unsigned char>
: public _Integer_limits<unsigned char, 0, UCHAR_MAX>
{};
#ifdef __STL_HAS_WCHAR_T
template<>
class numeric_limits<wchar_t>
: public _Integer_limits<wchar_t, INT_MIN, INT_MAX>
{};
#endif
template<>
class numeric_limits<short>
: public _Integer_limits<short, SHRT_MIN, SHRT_MAX>
{};
template<>
class numeric_limits<unsigned short>
: public _Integer_limits<unsigned short, 0, USHRT_MAX>
{};
template<>
class numeric_limits<int>
: public _Integer_limits<int, INT_MIN, INT_MAX>
{};
template<>
class numeric_limits<unsigned int>
: public _Integer_limits<unsigned int, 0, UINT_MAX>
{};
template<>
class numeric_limits<long>
: public _Integer_limits<long, LONG_MIN, LONG_MAX>
{};
template<>
class numeric_limits<unsigned long>
: public _Integer_limits<unsigned long, 0, ULONG_MAX>
{};
#ifdef __STL_LONG_LONG
#ifdef LONG_LONG_MIN
// CYGNUS LOCAL 9/4/1998
// fixed LONGLONG to be LONG_LONG
template<>
class numeric_limits<long long>
: public _Integer_limits<long long, LONG_LONG_MIN, LONG_LONG_MAX>
{};
// CYGNUS LOCAL 9/4/1998
// fixed LONGLONG to be LONG_LONG
template<>
class numeric_limits<unsigned long long>
: public _Integer_limits<unsigned long long, 0, ULONG_LONG_MAX>
{};
#endif
#endif /* __STL_LONG_LONG */
// Specializations for all built-in floating-point type.
template<> class numeric_limits<float>
: public _Floating_limits<float,
FLT_MANT_DIG, // Binary digits of precision
FLT_DIG, // Decimal digits of precision
FLT_MIN_EXP, // Minimum exponent
FLT_MAX_EXP, // Maximum exponent
FLT_MIN_10_EXP, // Minimum base 10 exponent
FLT_MAX_10_EXP, // Maximum base 10 exponent
0x7f800000u, // First word of +infinity
0x7f810000u, // First word of quiet NaN
0x7fc10000u, // First word of signaling NaN
true, // conforms to iec559
round_to_nearest>
{
public:
static float min() { return FLT_MIN; }
static float denorm_min() { return FLT_MIN; }
static float max() { return FLT_MAX; }
static float epsilon() { return FLT_EPSILON; }
static float round_error() { return 0.5f; } // Units: ulps.
};
template<> class numeric_limits<double>
: public _Floating_limits<double,
DBL_MANT_DIG, // Binary digits of precision
DBL_DIG, // Decimal digits of precision
DBL_MIN_EXP, // Minimum exponent
DBL_MAX_EXP, // Maximum exponent
DBL_MIN_10_EXP, // Minimum base 10 exponent
DBL_MAX_10_EXP, // Maximum base 10 exponent
0x7ff00000u, // First word of +infinity
0x7ff10000u, // First word of quiet NaN
0x7ff90000u, // First word of signaling NaN
true, // conforms to iec559
round_to_nearest>
{
public:
static double min() { return DBL_MIN; }
static double denorm_min() { return DBL_MIN; }
static double max() { return DBL_MAX; }
static double epsilon() { return DBL_EPSILON; }
static double round_error() { return 0.5; } // Units: ulps.
};
template<> class numeric_limits<long double>
: public _Floating_limits<long double,
LDBL_MANT_DIG, // Binary digits of precision
LDBL_DIG, // Decimal digits of precision
LDBL_MIN_EXP, // Minimum exponent
LDBL_MAX_EXP, // Maximum exponent
LDBL_MIN_10_EXP,// Minimum base 10 exponent
LDBL_MAX_10_EXP,// Maximum base 10 exponent
0x7ff00000u, // First word of +infinity
0x7ff10000u, // First word of quiet NaN
0x7ff90000u, // First word of signaling NaN
false, // Doesn't conform to iec559
round_to_nearest>
{
public:
static long double min() { return LDBL_MIN; }
static long double denorm_min() { return LDBL_MIN; }
static long double max() { return LDBL_MAX; }
static long double epsilon() { return LDBL_EPSILON; }
static long double round_error() { return 4; } // Units: ulps.
};
BZ_NAMESPACE_END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -