⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ranv2.cc

📁 obs网络试验平台
💻 CC
字号:
#include <stdio.h>#include <math.h>#include <stdlib.h>#include <string.h>#include "ranv2.h"#include "ranvar.h"#include "rng.h"static class GammaRandomVariableClass : public TclClass {public:	GammaRandomVariableClass() : TclClass("RandomVariable/Gamma") {}	TclObject* create(int, const char*const*) {		return(new GammaRandomVariable());	}} class_gammaranvar;GammaRandomVariable::GammaRandomVariable(){	bind("avg", &avg_);	bind("stdev", &stdev_);}GammaRandomVariable::GammaRandomVariable(double avg, double stdev){        avg_ = avg;        stdev_ = stdev;}double GammaRandomVariable::value(){     double alpha, beta;     if (stdev_ <= 0.0)        return (avg_);     alpha = avg_*avg_/(stdev_*stdev_);     beta = stdev_*stdev_/avg_; // We will ensure avg_ != 0 by forcing the user to enter a finite rate for                                // the traffic and taking the inverse     return( Gamma (beta, alpha) );}double GammaRandomVariable::erlang(double mean, int rep){  double sum;  int i;    for (sum = 1, i = 1; i <= rep; i++)    sum *= rng_->uniform (1.0);  return( -mean * log(sum));}double GammaRandomVariable::Gamma(double beta, double alpha){  double x, y, b, tmp;  int a;    x = y = 1;  tmp = -1;  if (alpha < 1) {    while(x + y > 1) {      x = pow( rng_->uniform(1.0), 1./alpha);      y = pow( rng_->uniform(1.0), 1./(1. - alpha));    }    return(-x*log( rng_->uniform(1.0) )*beta/(x+y));  } else if (alpha < 5) {    while( rng_->uniform(1.0) > tmp) {      a = (int) floor(alpha);      b = alpha - a;      x = erlang(alpha / a, a);      tmp = pow((x/alpha),b)*exp(-b*(x/alpha-1.));    }    return(x * beta);  } else {    a = floor(alpha);    if ( rng_->uniform(1.0) < (alpha - a))      a++;    x = erlang(beta, a);    return(x);  }}static class NegBinomRandomVariableClass : public TclClass {public:	NegBinomRandomVariableClass() : TclClass("RandomVariable/NegBinom") {}	TclObject* create(int, const char*const*) {		return(new NegBinomRandomVariable());	}} class_negbinomranvar;NegBinomRandomVariable::NegBinomRandomVariable(){	bind("avg", &avg_);	bind("sparm", &sparm_);}NegBinomRandomVariable::NegBinomRandomVariable(double avg, int sparm){        avg_ = avg;        sparm_ = sparm;}double NegBinomRandomVariable::value(){     double p;     if (sparm_ <= 0)        return (avg_);     p = sparm_/(avg_ + sparm_ - 1.0);     return( negbinom (sparm_, p) );}double NegBinomRandomVariable::geometric0 (double p){     double tmp;     if (p <= 0.0)        return (0.0);     tmp = log (rng_->uniform(1.0))/log(1.0 - p);     return (floor(tmp));}double NegBinomRandomVariable::negbinom (int s, double p){     int i;     double x;     for (i = 1, x= 0.0; i <= s; i++)        x += geometric0 (p);     x += 1.0;  // p was chosen to correspond to mean equal avg_ minus 1; add one back                //   here.  This guarantees that the sample will always be positive.     return (x);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -