📄 gc-mem.c
字号:
/* gc-mem.c * The heap manager. * * Copyright (c) 1996, 1997 * Transvirtual Technologies, Inc. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file. */#include "debug.h"/* undefine this to revert to old tile scheme */#define PREDEFINED_NUMBER_OF_TILES#include "config.h"#include "config-std.h"#include "config-mem.h"#include "gtypes.h"#include "baseClasses.h"#include "support.h"#include "stats.h"#include "locks.h"#include "thread.h"#include "gc.h"#include "gc-mem.h"#include "gc-incremental.h"#include "jni.h"#if defined(HAVE_UNISTD_H)#include <unistd.h>#endif#if defined(HAVE_SYS_TYPES_H)#include <sys/types.h>#endif#if defined(HAVE_SYS_MMAN_H)#include <sys/mman.h>#endif#ifndef MAX#define MAX(A,B) ((A) > (B) ? (A) : (B))#endifstatic gc_block *gc_last_block;static gc_block *gc_first_block;static gc_block *gc_reserve_pages;static iStaticLock gc_heap_lock;#if defined(KAFFE_STATS)static counter gcpages;#endifstatic gc_block* gc_small_block(size_t);static gc_block* gc_large_block(size_t);static gc_block* gc_primitive_alloc(size_t);/** * A preallocated block for small objects. * * @list list of gc_blocks available for objects of the same size * @sz the size of the objects that can be stored in @list. */typedef struct { gc_block* list; uint16 sz;} gc_freelist;/** * Array of preallocated blocks. * */static gc_freelist freelist[NR_FREELISTS+1]#ifdef PREDEFINED_NUMBER_OF_TILES = {#define S(sz) { NULL, sz } S(16), S(24), S(32), S(40), S(48), S(56), S(64), S(80), S(96), S(112), S(128), S(160), S(192), S(224), S(240), S(496), S(1000), S(2016), S(4040), { (gc_block *)-1, 0 }}#endif /* PREDEFINED_NUMBER_OF_TILES */;/** * Maps a given size to a freelist entry. * */static struct { uint16 list;} sztable[MAX_SMALL_OBJECT_SIZE+1];static int max_freelist;static size_t max_small_object_size;static size_t gc_heap_allocation_size; /* amount of memory by which to grow heap */static size_t gc_heap_initial_size; /* amount of memory to initially allocate */static size_t gc_heap_total; /* current size of the heap */static size_t gc_heap_limit; /* maximum size to which heap should grow */static uintp gc_heap_base; /* start of the heap */static uintp gc_heap_range; /* last gc-able address - gc_heap_base */#ifndef gc_pgsizestatic size_t gc_pgsize;static int gc_pgbits;#endif#ifdef KAFFE_VMDEBUGint gc_system_alloc_cnt;#endif/** * rounds @V up to the next page size. * */#define ROUNDUPPAGESIZE(V) (((uintp)(V) + gc_pgsize - 1) & -gc_pgsize)static char * gc_block_base = NULL;static size_t gc_num_blocks = 0;static size_t gc_num_live_pages = 0;#define KGC_BLOCKS ((gc_block *) gc_block_base)/** * Evaluates to the first usable address in gc_block @B. * */ #define GCBLOCK2BASE(B) (((char *)gc_heap_base) \ + gc_pgsize * ((B) - KGC_BLOCKS))/** * Evaluates to the size of the object that contains address @M. * */#define KGC_OBJECT_SIZE(M) gc_mem2block(M)->size#define ASSERT_ONBLOCK(OBJ, BLK) assert(gc_mem2block(OBJ) == BLK)#if !(defined(NDEBUG) || !defined(KAFFE_VMDEBUG))/* Magic constant used to mark blocks under gc's management */static const uint32 gc_magic = 0xD0DECADE;/* Set the magic marker of a block */static inline voidgc_set_magic_marker(gc_block *b){ b->magic = gc_magic;}/* Check the magic marker of a block */static inline boolgc_check_magic_marker(gc_block *b){ return b->magic == gc_magic;}/* * analyze the slack incurred by small objects */static int totalslack;static int totalsmallobjs;static void printslack(void){ dprintf( "allocated %d small objects, total slack %d, slack/per " "object %8.2f\n", totalsmallobjs, totalslack, totalslack/(double)totalsmallobjs);}/* * check whether the heap is still in a consistent state */static voidgc_heap_check(void){ int i; gc_block *chk_blk = gc_last_block; while (chk_blk->pprev != NULL) { if (chk_blk->pprev != NULL && chk_blk->pprev->pnext != chk_blk) { dprintf("Major failure in the Garbage Collector. Primitive block list trashed\n"); abort(); } chk_blk = chk_blk->pprev; } while (chk_blk != gc_last_block) { if (chk_blk->pnext != NULL && chk_blk->pnext->pprev != chk_blk) { dprintf("Major failure in the Garbage Collector (2). Primitive block list trashed\n"); abort(); } chk_blk = chk_blk->pnext; } for (i = 0; i < NR_FREELISTS; i++) { gc_block* blk = freelist[i].list; if (blk == 0 || blk == (gc_block*)-1) { continue; } else { gc_freeobj* mem = blk->free; assert(GCBLOCKINUSE(blk)); assert(blk->avail < blk->nr); assert(blk->funcs == (uint8*)GCBLOCK2BASE(blk)); assert(blk->state == (uint8*)(blk->funcs + blk->nr)); assert(blk->data == (uint8*)ROUNDUPALIGN(blk->state + blk->nr)); while (mem) { ASSERT_ONBLOCK(mem, blk); mem = mem->next; } } }}#endif /* !(defined(NDEBUG) || !defined(KAFFE_VMDEBUG)) */static inline boolgc_heap_is_unlimited(void){ return gc_heap_limit == UNLIMITED_HEAP;}/* * Initialise allocator. */voidgc_heap_initialise(void){ initStaticLock(&gc_heap_lock);#ifndef gc_pgsize gc_pgsize = getpagesize(); for (gc_pgbits = 0; (size_t)(1 << gc_pgbits) != gc_pgsize && gc_pgbits < 64; gc_pgbits++) ; assert(gc_pgbits < 64);#endif gc_heap_allocation_size = Kaffe_JavaVMArgs.allocHeapSize; gc_heap_initial_size = Kaffe_JavaVMArgs.minHeapSize; gc_heap_limit = Kaffe_JavaVMArgs.maxHeapSize; /* * Perform some sanity checks. */ if ((gc_heap_initial_size > gc_heap_limit) && !gc_heap_is_unlimited()) { dprintf( "Initial heap size (%dK) > Maximum heap size (%dK)\n", (int) (gc_heap_initial_size/1024), (int)(gc_heap_limit/1024)); KAFFEVM_EXIT(-1); }#ifndef PREDEFINED_NUMBER_OF_TILES { int i; int l; int b; int t; /* old scheme, where number of tiles was approximated by a series * of powers of two */#define OBJSIZE(NR) \ ((gc_pgsize-ROUNDUPALIGN(1)-(NR*(2+sizeof(void*))))/NR) /* For a given number of tiles in a block, work out the size of * the allocatable units which'll fit in them and build a translation * table for the sizes. */ i = 1; max_small_object_size = ROUNDDOWNALIGN(OBJSIZE(i)); l = max_small_object_size; for (;;) { b = ROUNDDOWNALIGN(OBJSIZE(i)); if (b >= MIN_OBJECT_SIZE) { for (t = l; t > b; t--) { sztable[t].list = l; } l = t; i <<= 1; } else { for (t = l; t > MIN_OBJECT_SIZE; t--) { sztable[t].list = l; } for (t = 0; t <= MIN_OBJECT_SIZE; t++) { sztable[t].list = MIN_OBJECT_SIZE; } break; } } /* Translate table into list numbers */ i = -1; b = -1; for (l = 0; l <= max_small_object_size; l++) { if (sztable[l].list != b) { b = sztable[l].list; i++; freelist[i].sz = b; } sztable[l].list = i; } max_freelist = i; }#else /* PREDEFINED_NUMBER_OF_TILES */ { /* * Use the preinitialized freelist table to initialize * the sztable. */ int sz = 0; uint16 flidx = 0; while (freelist[flidx].list == 0) { for (; sz <= freelist[flidx].sz; sz++) sztable[sz].list = flidx; flidx++; } max_small_object_size = sz - 1; max_freelist = flidx; }#endifDBG(SLACKANAL, atexit(printslack); );#undef OBJSIZE /* Round 'gc_heap_allocation_size' up to pagesize */ gc_heap_allocation_size = ROUNDUPPAGESIZE(gc_heap_allocation_size); /* Round 'gc_heap_initial_size' up to pagesize */ gc_heap_initial_size = ROUNDUPPAGESIZE(gc_heap_initial_size); /* allocate heap of initial size from system */ gc_heap_grow(gc_heap_initial_size);}/** * Allocate a piece of memory. */void*gc_heap_malloc(size_t sz){ size_t lnr; gc_freeobj* mem = NULL; gc_block** mptr; gc_block* blk; size_t nsz;#if defined(KAFFE_STATS) static timespent heap_alloc_time;#endif lockStaticMutex(&gc_heap_lock); startTiming(&heap_alloc_time, "gc_heap_malloc");DBG(SLACKANAL, if (KGC_SMALL_OBJECT(sz)) { totalslack += (freelist[sztable[sz].list].sz - sz); totalsmallobjs++; } );DBG(GCDIAG, gc_heap_check(); ); if (KGC_SMALL_OBJECT(sz)) { /* Translate size to object free list */ lnr = sztable[sz].list; nsz = freelist[lnr].sz; /* No available objects? Allocate some more */ mptr = &freelist[lnr].list; if (*mptr != 0) { blk = *mptr; assert(blk->free != 0);DBG(GCALLOC, dprintf("gc_heap_malloc: freelist %ld at %p free %p\n", (long) sz, *mptr, blk->free);); } else { blk = gc_small_block(nsz); if (blk == 0) { goto out; } blk->next = *mptr; *mptr = blk;DBG(GCALLOC, dprintf("gc_heap_malloc: small block %ld at %p free %p\n", (long) sz, *mptr, blk->free);); } /* Unlink free one and return it */ mem = blk->free; DBG(GCDIAG, assert(gc_check_magic_marker(blk)); ASSERT_ONBLOCK(mem, blk); if (mem->next) ASSERT_ONBLOCK(mem->next, blk)); blk->free = mem->next; KGC_SET_STATE(blk, GCMEM2IDX(blk, mem), KGC_STATE_NORMAL); /* Once we use all the sub-blocks up, remove the whole block * from the freelist. */ assert(blk->nr >= blk->avail); assert(blk->avail > 0); blk->avail--; if (blk->avail == 0) { *mptr = blk->next; } } else { nsz = sz; blk = gc_large_block(nsz); if (blk == 0) { goto out; } mem = GCBLOCK2FREE(blk, 0); KGC_SET_STATE(blk, 0, KGC_STATE_NORMAL);DBG(GCALLOC, dprintf("gc_heap_malloc: large block %ld at %p\n", (long) sz, mem); ); blk->avail--; assert(blk->avail == 0); } /* Clear memory */ memset(mem, 0, nsz); assert(KGC_OBJECT_SIZE(mem) >= sz);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -