⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 macroassemblerx86common.h

📁 linux下开源浏览器WebKit的源码,市面上的很多商用浏览器都是移植自WebKit
💻 H
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  */#ifndef MacroAssemblerX86Common_h#define MacroAssemblerX86Common_h#include <wtf/Platform.h>#if ENABLE(ASSEMBLER)#include "X86Assembler.h"#include "AbstractMacroAssembler.h"namespace JSC {class MacroAssemblerX86Common : public AbstractMacroAssembler<X86Assembler> {public:    typedef X86Assembler::Condition Condition;    static const Condition Equal = X86Assembler::ConditionE;    static const Condition NotEqual = X86Assembler::ConditionNE;    static const Condition Above = X86Assembler::ConditionA;    static const Condition AboveOrEqual = X86Assembler::ConditionAE;    static const Condition Below = X86Assembler::ConditionB;    static const Condition BelowOrEqual = X86Assembler::ConditionBE;    static const Condition GreaterThan = X86Assembler::ConditionG;    static const Condition GreaterThanOrEqual = X86Assembler::ConditionGE;    static const Condition LessThan = X86Assembler::ConditionL;    static const Condition LessThanOrEqual = X86Assembler::ConditionLE;    static const Condition Overflow = X86Assembler::ConditionO;    static const Condition Zero = X86Assembler::ConditionE;    static const Condition NonZero = X86Assembler::ConditionNE;    static const RegisterID stackPointerRegister = X86::esp;    // Integer arithmetic operations:    //    // Operations are typically two operand - operation(source, srcDst)    // For many operations the source may be an Imm32, the srcDst operand    // may often be a memory location (explictly described using an Address    // object).    void add32(RegisterID src, RegisterID dest)    {        m_assembler.addl_rr(src, dest);    }    void add32(Imm32 imm, Address address)    {        m_assembler.addl_im(imm.m_value, address.offset, address.base);    }    void add32(Imm32 imm, RegisterID dest)    {        m_assembler.addl_ir(imm.m_value, dest);    }        void add32(Address src, RegisterID dest)    {        m_assembler.addl_mr(src.offset, src.base, dest);    }        void and32(RegisterID src, RegisterID dest)    {        m_assembler.andl_rr(src, dest);    }    void and32(Imm32 imm, RegisterID dest)    {        m_assembler.andl_ir(imm.m_value, dest);    }    void lshift32(Imm32 imm, RegisterID dest)    {        m_assembler.shll_i8r(imm.m_value, dest);    }        void lshift32(RegisterID shift_amount, RegisterID dest)    {        // On x86 we can only shift by ecx; if asked to shift by another register we'll        // need rejig the shift amount into ecx first, and restore the registers afterwards.        if (shift_amount != X86::ecx) {            swap(shift_amount, X86::ecx);            // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"            if (dest == shift_amount)                m_assembler.shll_CLr(X86::ecx);            // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"            else if (dest == X86::ecx)                m_assembler.shll_CLr(shift_amount);            // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"            else                m_assembler.shll_CLr(dest);                    swap(shift_amount, X86::ecx);        } else            m_assembler.shll_CLr(dest);    }        void mul32(RegisterID src, RegisterID dest)    {        m_assembler.imull_rr(src, dest);    }        void mul32(Imm32 imm, RegisterID src, RegisterID dest)    {        m_assembler.imull_i32r(src, imm.m_value, dest);    }        void not32(RegisterID srcDest)    {        m_assembler.notl_r(srcDest);    }        void or32(RegisterID src, RegisterID dest)    {        m_assembler.orl_rr(src, dest);    }    void or32(Imm32 imm, RegisterID dest)    {        m_assembler.orl_ir(imm.m_value, dest);    }    void rshift32(RegisterID shift_amount, RegisterID dest)    {        // On x86 we can only shift by ecx; if asked to shift by another register we'll        // need rejig the shift amount into ecx first, and restore the registers afterwards.        if (shift_amount != X86::ecx) {            swap(shift_amount, X86::ecx);            // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"            if (dest == shift_amount)                m_assembler.sarl_CLr(X86::ecx);            // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"            else if (dest == X86::ecx)                m_assembler.sarl_CLr(shift_amount);            // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"            else                m_assembler.sarl_CLr(dest);                    swap(shift_amount, X86::ecx);        } else            m_assembler.sarl_CLr(dest);    }    void rshift32(Imm32 imm, RegisterID dest)    {        m_assembler.sarl_i8r(imm.m_value, dest);    }    void sub32(RegisterID src, RegisterID dest)    {        m_assembler.subl_rr(src, dest);    }        void sub32(Imm32 imm, RegisterID dest)    {        m_assembler.subl_ir(imm.m_value, dest);    }        void sub32(Imm32 imm, Address address)    {        m_assembler.subl_im(imm.m_value, address.offset, address.base);    }    void sub32(Address src, RegisterID dest)    {        m_assembler.subl_mr(src.offset, src.base, dest);    }    void xor32(RegisterID src, RegisterID dest)    {        m_assembler.xorl_rr(src, dest);    }    void xor32(Imm32 imm, RegisterID srcDest)    {        m_assembler.xorl_ir(imm.m_value, srcDest);    }        // Memory access operations:    //    // Loads are of the form load(address, destination) and stores of the form    // store(source, address).  The source for a store may be an Imm32.  Address    // operand objects to loads and store will be implicitly constructed if a    // register is passed.    void load32(ImplicitAddress address, RegisterID dest)    {        m_assembler.movl_mr(address.offset, address.base, dest);    }    void load32(BaseIndex address, RegisterID dest)    {        m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest);    }    DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)    {        m_assembler.movl_mr_disp32(address.offset, address.base, dest);        return DataLabel32(this);    }    void load16(BaseIndex address, RegisterID dest)    {        m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest);    }    DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)    {        m_assembler.movl_rm_disp32(src, address.offset, address.base);        return DataLabel32(this);    }    void store32(RegisterID src, ImplicitAddress address)    {        m_assembler.movl_rm(src, address.offset, address.base);    }    void store32(RegisterID src, BaseIndex address)    {        m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale);    }    void store32(Imm32 imm, ImplicitAddress address)    {        m_assembler.movl_i32m(imm.m_value, address.offset, address.base);    }        // Stack manipulation operations:    //    // The ABI is assumed to provide a stack abstraction to memory,    // containing machine word sized units of data.  Push and pop    // operations add and remove a single register sized unit of data    // to or from the stack.  Peek and poke operations read or write    // values on the stack, without moving the current stack position.        void pop(RegisterID dest)    {        m_assembler.pop_r(dest);    }    void push(RegisterID src)    {        m_assembler.push_r(src);    }    void push(Address address)    {        m_assembler.push_m(address.offset, address.base);    }    void push(Imm32 imm)    {        m_assembler.push_i32(imm.m_value);    }    // Register move operations:    //    // Move values in registers.    void move(Imm32 imm, RegisterID dest)    {        // Note: on 64-bit the Imm32 value is zero extended into the register, it        // may be useful to have a separate version that sign extends the value?        if (!imm.m_value)            m_assembler.xorl_rr(dest, dest);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -