📄 abstractmacroassembler.h
字号:
/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */#ifndef AbstractMacroAssembler_h#define AbstractMacroAssembler_h#include <wtf/Platform.h>#if ENABLE(ASSEMBLER)namespace JSC {template <class AssemblerType>class AbstractMacroAssembler {public: class Jump; class PatchBuffer; class CodeLocationLabel; class CodeLocationJump; class CodeLocationCall; class CodeLocationDataLabel32; class CodeLocationDataLabelPtr; typedef typename AssemblerType::RegisterID RegisterID; typedef typename AssemblerType::JmpSrc JmpSrc; typedef typename AssemblerType::JmpDst JmpDst; // Section 1: MacroAssembler operand types // // The following types are used as operands to MacroAssembler operations, // describing immediate and memory operands to the instructions to be planted. enum Scale { TimesOne, TimesTwo, TimesFour, TimesEight, }; // Address: // // Describes a simple base-offset address. struct Address { explicit Address(RegisterID base, int32_t offset = 0) : base(base) , offset(offset) { } RegisterID base; int32_t offset; }; // ImplicitAddress: // // This class is used for explicit 'load' and 'store' operations // (as opposed to situations in which a memory operand is provided // to a generic operation, such as an integer arithmetic instruction). // // In the case of a load (or store) operation we want to permit // addresses to be implicitly constructed, e.g. the two calls: // // load32(Address(addrReg), destReg); // load32(addrReg, destReg); // // Are equivalent, and the explicit wrapping of the Address in the former // is unnecessary. struct ImplicitAddress { ImplicitAddress(RegisterID base) : base(base) , offset(0) { } ImplicitAddress(Address address) : base(address.base) , offset(address.offset) { } RegisterID base; int32_t offset; }; // BaseIndex: // // Describes a complex addressing mode. struct BaseIndex { BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) : base(base) , index(index) , scale(scale) , offset(offset) { } RegisterID base; RegisterID index; Scale scale; int32_t offset; }; // AbsoluteAddress: // // Describes an memory operand given by a pointer. For regular load & store // operations an unwrapped void* will be used, rather than using this. struct AbsoluteAddress { explicit AbsoluteAddress(void* ptr) : m_ptr(ptr) { } void* m_ptr; }; // ImmPtr: // // A pointer sized immediate operand to an instruction - this is wrapped // in a class requiring explicit construction in order to differentiate // from pointers used as absolute addresses to memory operations struct ImmPtr { explicit ImmPtr(void* value) : m_value(value) { } intptr_t asIntptr() { return reinterpret_cast<intptr_t>(m_value); } void* m_value; }; // Imm32: // // A 32bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct Imm32 { explicit Imm32(int32_t value) : m_value(value) { }#if !PLATFORM(X86_64) explicit Imm32(ImmPtr ptr) : m_value(ptr.asIntptr()) { }#endif int32_t m_value; }; // Section 2: MacroAssembler code buffer handles // // The following types are used to reference items in the code buffer // during JIT code generation. For example, the type Jump is used to // track the location of a jump instruction so that it may later be // linked to a label marking its destination. // Label: // // A Label records a point in the generated instruction stream, typically such that // it may be used as a destination for a jump. class Label { friend class Jump; template<class AssemblerType_T> friend class AbstractMacroAssembler; friend class PatchBuffer; public: Label() { } Label(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } bool isUsed() const { return m_label.isUsed(); } void used() { m_label.used(); } private: JmpDst m_label; }; // DataLabelPtr: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabelPtr { template<class AssemblerType_T> friend class AbstractMacroAssembler; friend class PatchBuffer; public: DataLabelPtr() { } DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // DataLabel32: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabel32 { template<class AssemblerType_T> friend class AbstractMacroAssembler; friend class PatchBuffer; public: DataLabel32() { } DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // Call: // // A Call object is a reference to a call instruction that has been planted // into the code buffer - it is typically used to link the call, setting the // relative offset such that when executed it will call to the desired // destination. class Call { friend class PatchBuffer; template<class AssemblerType_T> friend class AbstractMacroAssembler; public: enum Flags { None = 0x0, Linkable = 0x1, Near = 0x2, LinkableNear = 0x3, }; Call() : m_flags(None) { } Call(JmpSrc jmp, Flags flags) : m_jmp(jmp) , m_flags(flags) { } bool isFlagSet(Flags flag) { return m_flags & flag; } static Call fromTailJump(Jump jump) { return Call(jump.m_jmp, Linkable); } private: JmpSrc m_jmp; Flags m_flags; }; // Jump: // // A jump object is a reference to a jump instruction that has been planted // into the code buffer - it is typically used to link the jump, setting the // relative offset such that when executed it will jump to the desired // destination. class Jump { friend class PatchBuffer; template<class AssemblerType_T> friend class AbstractMacroAssembler; friend class Call; public: Jump() { } Jump(JmpSrc jmp) : m_jmp(jmp) { } void link(AbstractMacroAssembler<AssemblerType>* masm) { masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); } void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) { masm->m_assembler.linkJump(m_jmp, label.m_label); } private: JmpSrc m_jmp; }; // JumpList: // // A JumpList is a set of Jump objects. // All jumps in the set will be linked to the same destination. class JumpList { friend class PatchBuffer; public: void link(AbstractMacroAssembler<AssemblerType>* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].link(masm); m_jumps.clear(); } void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].linkTo(label, masm); m_jumps.clear(); } void append(Jump jump) { m_jumps.append(jump); } void append(JumpList& other) { m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); } bool empty() { return !m_jumps.size(); } private: Vector<Jump, 16> m_jumps; }; // Section 3: MacroAssembler JIT instruction stream handles. // // The MacroAssembler supported facilities to modify a JIT generated // instruction stream after it has been generated (relinking calls and // jumps, and repatching data values). The following types are used // to store handles into the underlying instruction stream, the type // providing semantic information as to what it is that is in the // instruction stream at this point, and thus what operations may be // performed on it. // CodeLocationCommon: // // Base type for other CodeLocation* types. A postion in the JIT genertaed // instruction stream, without any semantic information. class CodeLocationCommon { public: CodeLocationCommon() : m_location(0) { } // In order to avoid the need to store multiple handles into the // instructions stream, where the code generation is deterministic // and the labels will always be a fixed distance apart, these // methods may be used to recover a handle that has nopw been // retained, based on a known fixed relative offset from one that has. CodeLocationLabel labelAtOffset(int offset); CodeLocationJump jumpAtOffset(int offset); CodeLocationCall callAtOffset(int offset); CodeLocationDataLabelPtr dataLabelPtrAtOffset(int offset); CodeLocationDataLabel32 dataLabel32AtOffset(int offset); operator bool() { return m_location; } void reset() { m_location = 0; } protected: explicit CodeLocationCommon(void* location) : m_location(location) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -