📄 tcpackedcache.h
字号:
// Copyright (c) 2007, Google Inc.// All rights reserved.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.// ---// Author: Geoff Pike//// This file provides a minimal cache that can hold a <key, value> pair// with little if any wasted space. The types of the key and value// must be unsigned integral types or at least have unsigned semantics// for >>, casting, and similar operations.//// Synchronization is not provided. However, the cache is implemented// as an array of cache entries whose type is chosen at compile time.// If a[i] is atomic on your hardware for the chosen array type then// raciness will not necessarily lead to bugginess. The cache entries// must be large enough to hold a partial key and a value packed// together. The partial keys are bit strings of length// kKeybits - kHashbits, and the values are bit strings of length kValuebits.//// In an effort to use minimal space, every cache entry represents// some <key, value> pair; the class provides no way to mark a cache// entry as empty or uninitialized. In practice, you may want to have// reserved keys or values to get around this limitation. For example, in// tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as// "unknown sizeclass."//// Usage Considerations// --------------------//// kHashbits controls the size of the cache. The best value for// kHashbits will of course depend on the application. Perhaps try// tuning the value of kHashbits by measuring different values on your// favorite benchmark. Also remember not to be a pig; other// programs that need resources may suffer if you are.//// The main uses for this class will be when performance is// critical and there's a convenient type to hold the cache's// entries. As described above, the number of bits required// for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose// kKeybits + kValuebits is 43. Then it probably makes sense to// chose kHashbits >= 11 so that cache entries fit in a uint32.//// On the other hand, suppose kKeybits = kValuebits = 64. Then// using this class may be less worthwhile. You'll probably// be using 128 bits for each entry anyway, so maybe just pick// a hash function, H, and use an array indexed by H(key):// void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }// V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }// etc.//// Further Details// ---------------//// For caches used only by one thread, the following is true:// 1. For a cache c,// (c.Put(key, value), c.GetOrDefault(key, 0)) == value// and// (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value// if the elided code contains no c.Put calls.//// 2. Has(key) will return false if no <key, value> pair with that key// has ever been Put. However, a newly initialized cache will have// some <key, value> pairs already present. When you create a new// cache, you must specify an "initial value." The initialization// procedure is equivalent to Clear(initial_value), which is// equivalent to Put(k, initial_value) for all keys k from 0 to// 2^kHashbits - 1.//// 3. If key and key' differ then the only way Put(key, value) may// cause Has(key') to change is that Has(key') may change from true to// false. Furthermore, a Put() call that doesn't change Has(key')// doesn't change GetOrDefault(key', ...) either.//// Implementation details://// This is a direct-mapped cache with 2^kHashbits entries;// the hash function simply takes the low bits of the key.// So, we don't have to store the low bits of the key in the entries.// Instead, an entry is the high bits of a key and a value, packed// together. E.g., a 20 bit key and a 7 bit value only require// a uint16 for each entry if kHashbits >= 11.//// Alternatives to this scheme will be added as needed.#ifndef TCMALLOC_PACKED_CACHE_INL_H__#define TCMALLOC_PACKED_CACHE_INL_H__#ifndef WTF_CHANGES#include "base/basictypes.h" // for COMPILE_ASSERT#include "base/logging.h" // for DCHECK#endif#ifndef DCHECK_EQ#define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2))#endif// A safe way of doing "(1 << n) - 1" -- without worrying about overflow// Note this will all be resolved to a constant expression at compile-time#define N_ONES_(IntType, N) \ ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \ (static_cast<IntType>(1) << ((N)-1))) )// The types K and V provide upper bounds on the number of valid keys// and values, but we explicitly require the keys to be less than// 2^kKeybits and the values to be less than 2^kValuebits. The size of// the table is controlled by kHashbits, and the type of each entry in// the cache is T. See also the big comment at the top of the file.template <int kKeybits, typename T>class PackedCache { public: typedef uintptr_t K; typedef size_t V; static const size_t kHashbits = 12; static const size_t kValuebits = 8; explicit PackedCache(V initial_value) { COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size); COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size); COMPILE_ASSERT(kHashbits <= kKeybits, hash_function); COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits, entry_size_must_be_big_enough); Clear(initial_value); } void Put(K key, V value) { DCHECK_EQ(key, key & kKeyMask); DCHECK_EQ(value, value & kValueMask); array_[Hash(key)] = static_cast<T>(KeyToUpper(key) | value); } bool Has(K key) const { DCHECK_EQ(key, key & kKeyMask); return KeyMatch(array_[Hash(key)], key); } V GetOrDefault(K key, V default_value) const { // As with other code in this class, we touch array_ as few times // as we can. Assuming entries are read atomically (e.g., their // type is uintptr_t on most hardware) then certain races are // harmless. DCHECK_EQ(key, key & kKeyMask); T entry = array_[Hash(key)]; return KeyMatch(entry, key) ? EntryToValue(entry) : default_value; } void Clear(V value) { DCHECK_EQ(value, value & kValueMask); for (int i = 0; i < 1 << kHashbits; i++) { array_[i] = static_cast<T>(value); } } private: // We are going to pack a value and the upper part of a key into // an entry of type T. The UPPER type is for the upper part of a key, // after the key has been masked and shifted for inclusion in an entry. typedef T UPPER; static V EntryToValue(T t) { return t & kValueMask; } static UPPER EntryToUpper(T t) { return t & kUpperMask; } // If v is a V and u is an UPPER then you can create an entry by // doing u | v. kHashbits determines where in a K to find the upper // part of the key, and kValuebits determines where in the entry to put // it. static UPPER KeyToUpper(K k) { const int shift = kHashbits - kValuebits; // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. return static_cast<T>(k >> shift) & kUpperMask; } // This is roughly the inverse of KeyToUpper(). Some of the key has been // thrown away, since KeyToUpper() masks off the low bits of the key. static K UpperToPartialKey(UPPER u) { DCHECK_EQ(u, u & kUpperMask); const int shift = kHashbits - kValuebits; // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. return static_cast<K>(u) << shift; } static size_t Hash(K key) { return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits); } // Does the entry's partial key match the relevant part of the given key? static bool KeyMatch(T entry, K key) { return ((KeyToUpper(key) ^ entry) & kUpperMask) == 0; } static const size_t kTbits = 8 * sizeof(T); static const int kUpperbits = kKeybits - kHashbits; // For masking a K. static const K kKeyMask = N_ONES_(K, kKeybits); // For masking a T. static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits; // For masking a V or a T. static const V kValueMask = N_ONES_(V, kValuebits); T array_[1 << kHashbits];};#undef N_ONES_#endif // TCMALLOC_PACKED_CACHE_INL_H__
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -