📄 dtoa.cpp
字号:
word0(d) &= ~Sign_bit; /* clear sign bit */ } else *sign = 0; if ((word0(d) & Exp_mask) == Exp_mask) { /* Infinity or NaN */ *decpt = 9999; if (!word1(d) && !(word0(d) & 0xfffff)) return nrv_alloc("Infinity", rve, 8); return nrv_alloc("NaN", rve, 3); } if (!dval(d)) { *decpt = 1; return nrv_alloc("0", rve, 1); }#ifdef SET_INEXACT try_quick = oldinexact = get_inexact(); inexact = 1;#endif b = d2b(dval(d), &be, &bbits);#ifdef Sudden_Underflow i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));#else if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {#endif dval(d2) = dval(d); word0(d2) &= Frac_mask1; word0(d2) |= Exp_11; /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias;#ifndef Sudden_Underflow denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P - 1) - 1); x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 : word1(d) << 32 - i; dval(d2) = x; word0(d2) -= 31 * Exp_msk1; /* adjust exponent */ i -= (Bias + (P - 1) - 1) + 1; denorm = 1; }#endif ds = (dval(d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); k = (int)ds; if (ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (dval(d) < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; }#ifndef SET_INEXACT#ifdef Check_FLT_ROUNDS try_quick = Rounding == 1;#else try_quick = 1;#endif#endif /*SET_INEXACT*/ leftright = 1; ilim = ilim1 = -1; i = 18; ndigits = 0; s = s0 = rv_alloc(i); if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; dval(d2) = dval(d); k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k & 0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; dval(d) /= bigtens[n_bigtens - 1]; ieps++; } for (; j; j >>= 1, i++) { if (j & 1) { ieps++; ds *= bigtens[i]; } } dval(d) /= ds; } else if ((j1 = -k)) { dval(d) *= tens[j1 & 0xf]; for (j = j1 >> 4; j; j >>= 1, i++) { if (j & 1) { ieps++; dval(d) *= bigtens[i]; } } } if (k_check && dval(d) < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; dval(d) *= 10.; ieps++; } dval(eps) = (ieps * dval(d)) + 7.; word0(eps) -= (P - 1) * Exp_msk1; if (ilim == 0) { S = mhi = 0; dval(d) -= 5.; if (dval(d) > dval(eps)) goto one_digit; if (dval(d) < -dval(eps)) goto no_digits; goto fast_failed; }#ifndef No_leftright if (leftright) { /* Use Steele & White method of only * generating digits needed. */ dval(eps) = (0.5 / tens[ilim - 1]) - dval(eps); for (i = 0;;) { L = (long int)dval(d); dval(d) -= L; *s++ = '0' + (int)L; if (dval(d) < dval(eps)) goto ret1; if (1. - dval(d) < dval(eps)) goto bump_up; if (++i >= ilim) break; dval(eps) *= 10.; dval(d) *= 10.; } } else {#endif /* Generate ilim digits, then fix them up. */ dval(eps) *= tens[ilim - 1]; for (i = 1;; i++, dval(d) *= 10.) { L = (int32_t)(dval(d)); if (!(dval(d) -= L)) ilim = i; *s++ = '0' + (int)L; if (i == ilim) { if (dval(d) > 0.5 + dval(eps)) goto bump_up; else if (dval(d) < 0.5 - dval(eps)) { while (*--s == '0') { } s++; goto ret1; } break; } }#ifndef No_leftright }#endiffast_failed: s = s0; dval(d) = dval(d2); k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || dval(d) <= 5 * ds) goto no_digits; goto one_digit; } for (i = 1;; i++, dval(d) *= 10.) { L = (int32_t)(dval(d) / ds); dval(d) -= L * ds;#ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (dval(d) < 0) { L--; dval(d) += ds; }#endif *s++ = '0' + (int)L; if (!dval(d)) {#ifdef SET_INEXACT inexact = 0;#endif break; } if (i == ilim) { dval(d) += dval(d); if (dval(d) > ds || dval(d) == ds && L & 1) {bump_up: while (*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = 0; if (leftright) { i =#ifndef Sudden_Underflow denorm ? be + (Bias + (P - 1) - 1 + 1) :#endif 1 + P - bbits; b2 += i; s2 += i; mhi = i2b(1); } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); b1 = mult(mhi, b); Bfree(b); b = b1; } if ((j = b5 - m5)) b = pow5mult(b, j); } else b = pow5mult(b, b5); } S = i2b(1); if (s5 > 0) S = pow5mult(S, s5); /* Check for special case that d is a normalized power of 2. */ spec_case = 0; if (!word1(d) && !(word0(d) & Bndry_mask)#ifndef Sudden_Underflow && word0(d) & (Exp_mask & ~Exp_msk1)#endif ) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */#ifdef Pack_32 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0x1f)) i = 32 - i;#else if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0xf)) i = 16 - i;#endif if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } if (b2 > 0) b = lshift(b, b2); if (s2 > 0) S = lshift(S, s2); if (k_check) { if (cmp(b,S) < 0) { k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (leftright) mhi = multadd(mhi, 10, 0); ilim = ilim1; } } if (leftright) { if (m2 > 0) mhi = lshift(mhi, m2); /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if (spec_case) { mhi = Balloc(mhi->k); Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P); } for (i = 1;;i++) { dig = quorem(b,S) + '0'; /* Do we yet have the shortest decimal string * that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi); j1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta); if (j1 == 0 && !(word1(d) & 1)) { if (dig == '9') goto round_9_up; if (j > 0) dig++;#ifdef SET_INEXACT else if (!b->x[0] && b->wds <= 1) inexact = 0;#endif *s++ = dig; goto ret; } if (j < 0 || j == 0 && !(word1(d) & 1)) { if (!b->x[0] && b->wds <= 1) {#ifdef SET_INEXACT inexact = 0;#endif goto accept_dig; } if (j1 > 0) { b = lshift(b, 1); j1 = cmp(b, S); if ((j1 > 0 || j1 == 0 && dig & 1) && dig++ == '9') goto round_9_up; }accept_dig: *s++ = dig; goto ret; } if (j1 > 0) { if (dig == '9') { /* possible if i == 1 */round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } *s++ = dig; if (i == ilim) break; b = multadd(b, 10, 0); if (mlo == mhi) mlo = mhi = multadd(mhi, 10, 0); else { mlo = multadd(mlo, 10, 0); mhi = multadd(mhi, 10, 0); } } } else for (i = 1;; i++) { *s++ = dig = quorem(b,S) + '0'; if (!b->x[0] && b->wds <= 1) {#ifdef SET_INEXACT inexact = 0;#endif goto ret; } if (i >= ilim) break; b = multadd(b, 10, 0); } /* Round off last digit */ b = lshift(b, 1); j = cmp(b, S); if (j > 0 || j == 0 && dig & 1) {roundoff: while (*--s == '9') if (s == s0) { k++; *s++ = '1'; goto ret; } ++*s++; } else { while (*--s == '0') { } s++; } goto ret;no_digits: k = -1 - ndigits; goto ret;one_digit: *s++ = '1'; k++; goto ret;ret: Bfree(S); if (mhi) { if (mlo && mlo != mhi) Bfree(mlo); Bfree(mhi); }ret1:#ifdef SET_INEXACT if (inexact) { if (!oldinexact) { word0(d) = Exp_1 + (70 << Exp_shift); word1(d) = 0; dval(d) += 1.; } } else if (!oldinexact) clear_inexact();#endif Bfree(b); *s = 0; *decpt = k + 1; if (rve) *rve = s; return s0;}} // namespace WTF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -